

Faculty of Engineering and Technology

Master of Computing (MCOM)

Effective Customer Churn Prediction (ECCP)

Using Parallel Grey Wolf Optimizer

لفعال لإعراض الزبون عن الخدمةالتوقع ا

الموازي ستخدام محسن الذئب الرماديإب

Author:

Ahmad Dajani

Supervisor:

Dr. Majdi Mafarja

This Thesis was submitted in partial fulfilment of the requirements for

the Master’s Degree in Computing from the Faculty of Graduate Studies

at Birzeit University, Palestine

February 2020

Effective Customer Churn Prediction (ECCP)

Using Parallel Grey Wolf Optimizer

By

Ahmad Dajani

Approved by the thesis committee

Dr. Majdi Mafarja, Birzeit University

Dr. Ahmad Alsadeh, Birzeit University

Dr. Ahmad Afaneh, Birzet university

Date approved: 25/2/2020

i

Abstract
Metaheuristics algorithms gained the attention of many researchers in different optimization

fields. Feature Selection (FS) is combinatorial optimization problem where different meta-

heuristics algorithms were used to tackle it. Grey Wolf Optimizer (GWO) is a recent pop-

ulation based metaheuristic algorithm that showed a good performance in tackling different

optimization problems, including the FS problem. As other global optimization algorithms,

GWO suffers from a set of drawbacks (e.g. stacking at the local optima and population

diversity problem) that may degrade its performance.

In this thesis, a novel parallel GWO is proposed in the aim of maintaining a reasonable

diversity of the population, in addition to helping the algorithm to escape the local optima.

Two parallel models were proposed; the first one called homogeneous GWO, where four copies

of a GWO were employed on the same population. While in the second approach, which is

called heterogeneous GWO, four copies of the GWO, each one with a different updating

strategy for the main parameter of the algorithm, were employed on the same population.

The proposed models were bench-marked on a set of well-known UCI datasets.

To assess the efficiency of the proposed algorithms, two experimental approaches were

conducted. The first experiment included comparing the proposed algorithms (independent,

cooperative) with the original algorithm. In this experiment, the independent homogeneous

parallel version of the GWO showed a good performance when compared with sequential

one, and the independent heterogeneous GWO outperformed both the sequential and homo-

geneous versions of the GWO. Moreover, the cooperative heterogeneous algorithm outper-

formed all previous algorithms in terms of accuracy, however, it suffers from long execution

time. The second experiment included comparing the proposed algorithms with selected ma-

chine learning techniques (e.g CART) in term of accuracy. Telecom company dataset from

Kaggle data repository was used in this experiment to evaluate the proposed approach in

order to predict the possible churner customers. The results showed the superiority of the

heterogeneous cooperative algorithm.

ii

صخلملا

يهةزيملارايتخإ.ةفلتخملانيسحتلاتلااجميفنيثحابلانمديدعلامامتهإايلعلاةلدلأاتايمزراوختبستكا

ةيمزراوخيهيدامرلابئذلاةيمزراوخ.اهتجلاعملةفلتخمايلعةلدأتايمزراوخمدختستثيحيجامدنانيسحتةلكشم

نيسحتلالكاشمةجلاعميفديجءادابزيمتتولولحلاددعتساساىلعةمئاقلاايلعلاةلدلااتايمزراوخنمةثيدح

بئذلاةيمزراوخنإف،ىرخلااةلماشلانيسحتلاتايمزراوخنماهريغكو.ةزيملارايتخإةلكشمكلذيفامب،ةفلتخملا

ةلهؤملالولحلاراوجبسدكتلا:لكاشملاكلتىلعةلثملاانمو،اهئاداىلعرثؤتدقيتلالكاشملاضعبنميناعتيدامرلا

.لولحلايفعونتلاةلكشمو،ايلحم

لوقعمعونتىلعظافحلافدهبيزاوتملكشبيدامرلابئذلانسحملةديدجةيمزراوخةحورطلااهذهتمدق

لولأا:نييزاوتمنيجذومنحارتقامت.ةيلحملالولحلانمبورهلاىلعةيمزراوخلاةدعاسمىلإةفاضلإاب،لولحلانم

ريغلايناثلاجذومنلايفامنيب.لحلاسفنىلعيدامرلابئذلاةيمزراوخنمخسنعبرأمادختسامتثيح،سناجتم

ثيدحتةيجيتارتساىلعةيمزراوخلكلمعتثيح،يدامرلابئذلاةيمزراوخنمخسنعبرأمادختسامت،سناجتملا

.ةفورعملا(UIC)تانايبنمةعومجمىلعةحرتقملاجذامنلاءاداسايقمت.لحلاسفنىلعةفلتخم

تايمزراوخلاةنراقمىلولأاةبرجتلاتنمضت.نييبيرجتنيجهنءارجإمت،ةحرتقملاتايمزراوخلاةءافكمييقتل

ةسناجتملاةيزاوتملاةيمزراوخلاترهظأ،ةبرجتلاهذهيف.ةلسلستملاةيمزراوخلاعمةينواعتلاوةلقتسملاةحرتقملا

ءادأيدامرلابئذلانسحمنمةلقتسملا

ً

ريغلاةيمزراوخلاتتقوفتو،ةيلصلااةلسلستملاةخسنلاباهتنراقمدنعاًديج

ىلعةولاع.ةسناجتملاةيمزراوخلاوةلسلستملاةيمزراوخلانملكىلعيدامرلابئذلانسحمنمةلقتسملاةسناجتملا

اهنإف،كلذعمو،ةقدلاثيحنمةقباسلاتايمزراوخلاعيمجىلعةسناجتملاريغلاةينواعتلاةيمزراوخلاتقوفت،كلذ

لثمةراتخميلآملعتتاينقتعمةحرتقملاتايمزراوخلاةنراقمةيناثلاةبرجتلاتنمضت.ليوطذيفنتتقونميناعت

(CART)تانايبمادختسامتةبرجتلاهذهيفو.نيلمتحملاءلامعلاضارعإبؤبنتلاةقديفةحرتقملاجهنلامييقتفدهب

.ةسناجتملاريغةينواعتلاةيمزراوخلاقوفتةبرجتلاهذهجئاتنترهظأو.(Kaggle)تانايبعدوتسمنمتلااصتاةكرشل

iii

Acknowledgements
I wish to dedicate this thesis to my beloved late father, who always had confidence in me and

offered me encouragement and support in all my endeavors.

And, I would like to pay special thankfulness and appreciation to Dr. Majdi Mafarja for

his vital support and assistance. His encouragement made it possible to achieve the goal of

this research.

Finally, I must express my very profound gratitude to my mother, my wife Ayah, my

children Tayseer & Mohammad, and my aunt Fatima for providing me with unfailing support

and continuous encouragement throughout my years of study and through the process of

researching and writing this thesis. This accomplishment would not have been possible

without them.

Contents

Abstract i

Arabic Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Research Motivation . 1

1.2 Research Objectives . 2

1.3 Research Questions . 2

1.4 Customer Churn In Telecommunication Industry 3

1.4.1 Churning . 4

1.5 Data Mining Techniques . 5

2 Literature Review 10

2.1 Metaheuristic . 10

2.2 Metaheuristc for Feature Selection . 12

2.3 Parallel Metaheuristic . 13

2.3.1 Parameter Level . 14

2.3.2 Search Level . 14

2.3.3 Algorithm Level . 15

2.4 Customer Churn . 15

3 Background 19

3.1 Feature Selection . 19

3.1.1 Feature subset generation . 20

Complete Search . 21

Random Search . 21

Heuristic Search . 21

3.1.2 Feature evaluation functions . 22

Filter Approach . 22

Wrapper Approach . 23

3.1.3 Feature stopping Criterion . 24

3.2 Metaheuristics . 25

3.2.1 Single-Based Meta-heuristic Algorithms 26

3.2.2 Population-Based Meta-heuristic Algorithms 26

3.3 Swarm Intelligence Algorithms . 28

3.3.1 Gery Wolf Optimizer (GWO) . 28

3.3.2 Binary Gery Wolf Optimizer (BGWO) 31

3.4 Development Frameworks . 35

3.4.1 OpenMP . 35

3.4.2 Shark . 36

4 Parallel Metaheuristics 38

4.1 Parallel and Distributed Architectures . 39

4.1.1 Dedicated Architectures . 42

4.2 Parallel Programming Environments and Middlewares 42

4.3 Performance Evaluation . 44

4.4 Parallel Design Of Metaheuristics . 45

4.4.1 Algorithmic-Level Parallel Model . 45

Independent Algorithmic-Level Parallel Model 46

Cooperative Algorithmic-Level Parallel Model 46

4.4.2 Iteration-Level Parallel Model . 47

4.4.3 Solution-Level Parallel Model . 48

4.4.4 Main Properties of Parallel Metaheuristics 48

5 The Implementation of Parallel BGWO 50

5.1 Data Acquisition . 51

5.2 Preprocessing . 53

5.2.1 Data Cleaning . 53

5.3 The Proposed Approach . 53

5.3.1 Multiple Offspring Sampling (MOS) 54

5.3.2 Independent parallel BGWO . 55

5.3.3 Cooperative parallel BGWO . 56

6 Experiments 60

6.1 Experiment Setup . 60

6.2 Benchmark Datasets . 62

6.3 Results and Discussion . 63

7 Conclusion and Future Work 81

References 82

List of Abbreviations

ABC Artificial Bee Colony

ALO Ant Lion Optimizer

ANN Artificial Neural Networks

BA Bat Algorithm

BC Bee Colony

BGWO Binary Grey Wolf Optimizer

CA Clustering Algorithm

CART Classification And Regression Tree

CHAID Chi-squared Automatic Interaction Detector

CPU Central processing Unit

CRISP-DM Cross-Industry Process for Data Mining Model

CRM Customer-Relationship Management

CSF Core Service Failure

CSV Comma-Separated Values file

DE Differential Evolution

DE Dolphin Echolocation

DF Dragon-Fly Algorithm

DiPS Distributed Problem Solver platform

DM Data Mining

DMA Direct Memory Access

DR Dimensionality Reduction

EA Evolutionary Algorithms

EPD Evolutionary Population Dynamics

FPGA Field Programmable Gate Array

FPU Floating Point Unit

FS Feature Selection

F-test Friedman Test

GA Genetic Algorithm

GCA Genetic Clustering Algorithm

GD-RCGA Gradual Distributed Real-Coded GA

GOA Grasshopper Optimization Algorithm

GPU Graphical Processing Unit

GSA Gravitational Search Algorithm

GWO Grey Wolf Optimizer

HGA-NN Hybrid Genetic Algorithm with a Neural Network

I/O Input/Output

JSS Job Shop Scheduling problem

KDD Knowledge Discovery in Database

KNN K-Nearest Neighbors algorithm

KNN-LR K-Nearest Neighbor algorithm and Logistic Regression

MaxItr Maximum Iterations

MIMD Multiple Instruction streams - Multiple Data streams

MISD Multiple Instruction streams - Single Data stream

MOS Multiple Offspring Sampling

MPI Message Passing Interface

NB Naive Bayes classifier

NFL No Free Lunch theorem

NUMA Non-uniform Memory Access

OpenMP Open Multi Processing Framework

pBGWO Parallel Binary Grey Wolf Optimizer

pcMBGWO Parallel cooperative Multi Offspring Samplings Binary Grey Wolf Optimizer

piMBGWO Parallel Independent Multi Offspring Samplings Binary Grey Wolf Optimizer

P-metaheuristics Population-based metaheuristics

PSO Particle Swarm Optimization

P-value Probability - value

RBF Radial Basis Function

RF Random Forest

RPC Remote Procedure Call

SA Simulated Annealing algorithm

SEF Service Encounter Failure

SIMD Single Instruction stream - Multiple Data streams

SISD Single Instruction stream - Single Data stream

S-metaheuristics Single-Based metaheuristic

SVM Support Vector Machines

TSP Traveling Salesman Problem

t-test Student’s Test

UMA Uniform Memory Access

WOA Whale Optimization Algorithm

List of Figures

1.1 The phases of the CRISP data mining model 6

1.2 A simplified churn prediction decision tree. 8

3.1 Feature selection process . 20

3.2 A filter approach of Feature Selection. 23

3.3 A wrapper approach of Feature Selection. 24

3.4 Main principle of the single-based solution algorithm. 26

3.5 Main principle of the population-based solution algorithm. 27

3.6 Grey wolf Hierarchy (dominance increasing from down top) 29

3.7 wolves position vectors in 2D and 3D . 30

3.8 Position updating in GWO . 32

3.9 Sigmoid function. 33

3.10 OpenMP execution model. 35

4.1 SISD computers. 39

4.2 MISD computers. 40

4.3 SIMD computers. 40

4.4 MIMD computers . 41

4.5 Main parallel programming languages, programming environments and mid-

dlewares. 42

4.6 Combination of the three parallel hierarchical models of metaheuristics 45

4.7 The parallel independent algorithmic-level model for metaheuristics 46

4.8 Design questions involved by the parallel algorithmic-level model for meta-

heuristics . 47

5.1 Data modelling steps . 50

5.2 Parallel independent MOS BGWO flowchart. 56

5.3 cooperative parallel BGWO flowchart. 58

6.1 Graph comparison between BGWO, pBGWO, piMBGWO and pcMBGWO. . 70

6.2 Fitness convergence curve for benchmark datasets. 72

List of Tables

2.1 Literature review summary: prediction approaches used for customer churn. . 18

3.1 Functions used from Shark framework. 37

5.1 Churn in Telecom’s dataset from Kaggle . 52

5.2 Update functions used in parallel MOS BGWO. 55

5.3 Cooperative parallel BGWO settings. 59

6.1 Tool-chains used in the development. 61

6.2 CPU specifications used in development. 61

6.3 Parameters tuning for the proposed algorithm. 62

6.4 List of used datasets in the experiments. 63

6.5 The update functions rank (ascending order by average column). 65

6.6 Comparison between BGWO, pBGWO, piMBGWO and pcMBGWO in terms

of fitness average. 66

6.7 Comparison between BGWO, pBGWO, piMBGWO and pcMBGWO in terms

of accuracy average. 67

6.8 Comparison between BGWO, pBGWO, piMBGWO and pcMBGWO in terms

of number of features average. 68

6.9 Comparison between BGWO, pBGWO, piMBGWO and pcMBGWO in terms

time (seconds). 69

6.10 F-test ranking for BGWO, pBGWO, piMBGWO and pcMBGWO in term of

fitness. 73

6.11 F-test ranking for BGWO, pBGWO, piMBGWO and pcMBGWO in term of

accuracy. 73

6.12 F-test ranking for BGWO, pBGWO, piMBGWO and pcMBGWO in term of

number of features. 73

6.13 F-test ranking for BGWO, pBGWO, piMBGWO and pcMBGWO in term of

time (second). 74

6.14 Wilcoxon test (P-value) for pcMBGWO versus BGWO, pBGWO, piMBGWO

in term of accuracy. 75

6.15 Wilcoxon test (P-value) for pcMBGWO versus BGWO, pBGWO, piMBGWO

in term of number if features. 76

6.16 Wilcoxon test (P-value) for pcMBGWO versus BGWO, pBGWO, piMBGWO

in term of fitness. 77

6.17 The proposed approach pcMBGWO versus WOA, GA, PSO and DF in term

of accuracy over UCI dataset. 78

6.18 Comparing the proposed approaches with selected machine learning techniques

on telecom customers dataset. 79

1

Chapter 1

Introduction

The world has recently witnessed rapid development and growth in the telecommunications

sector. Due to the existence of many service providers, the focus should be on maintaining

existing customers rather than acquiring new ones [1]. From this perspective, predicting the

customers that are welling to move to a competing operator (which is known as customer

churn), becomes important for the survival of companies and reduce expenses. In this thesis,

the focus will be on predicting the churner customers in the prepaid programs, who are

characterized by non-compliance with the contract with the telecommunications companies.

1.1 Research Motivation

The customers database volume is increasing due to technology advancement in data storage

and decreasing its cost as well. In this sense, the problem of data reduction arises. Feature

selection (FS) is one solution to this problem, which is used to remove noisy, redundant

and irrelevant data from database (dataset). Moreover, (FS) is important to reduce data

size stored in database, as well as decrease over-fitting problem. Its worth mentioning that,

Feature Selection (FS) is an optimization problem itself, means that we need optimization

techniques such meta-heuristic algorithms to conduct (FS) as a solution, since the complete

search is impossible due to enormous data size, and computational power needed.

There are varieties of metaheuristic algorithms, but there is no one algorithm capable to

solve all problems (NFL) theorem. This motivated us to use Grey Wolf Optimizer (GWO)

2

with different update functions using MOS technique (section 5.3.1). Moreover, the sequential

GWO algorithm is a time wasting in the huge datasets, which was also motivated us to write

a parallel version of GWO algorithm using OpenMP framework to run on multi-processors

(section 3.4.1) to speed up the algorithm.

1.2 Research Objectives

The main goal of this thesis is to propose two parallel versions of the GWO; namely homo-

geneous GWO and heterogeneous GWO as searching strategies in a wrapper (FS) method

to enhance the prediction accuracy of a churn prediction model. To achieve this goal; the

following research objectives can be formulated:

• To assess the influence of employing multiple copies of the GWO on the same popu-

lation, in a parallel form, on the quality of the produced feature subset, rather than

using the original GWO.

• To evaluate two different versions independent and cooperative algorithms, (i.e., homo-

geneous and heterogeneous) of the parallel GWO.

1.3 Research Questions

In the context of improving the accuracy of the churn prediction model by eliminating the

irrelevant and/or redundant features from the original feature set using a parallel GWO

algorithm, this thesis seeks to answer the following research questions:

• RQ 1: What is the influence of employing a (FS) method on the churn prediction model

in telecom industry?

• RQ 2: How the parallel version of the (GWO) enhances its performance in selecting

the most informative features that enhances the performance of the prediction model?

• RQ 3: How the performance of the (GWO) is affected by using different parallelizim

approaches (i.e., heterogeneous or homogeneous)?

3

• RQ 4: What is the benefit of using advanced computational intelligence methods instead

of the basic machine learning algorithms for predicting consumer churn?

1.4 Customer Churn In Telecommunication Industry

The volume of data has recently evolved due to advances in information technology. The char-

acteristics of this data are raw and contain many valuable and hidden information. Customers

churn prediction is one of the biggest challenges for telecom companies. As mentioned above,

companies prefer to keep the current customers more than attracting new ones, because new

customers mean an increase in expenses and new recruits of manpower [2]. Telecommuni-

cation companies use databases to store customer data, where these databases are used by

churn models to detect customers who intend to leave the service provider. The model should

disclose the reason why the customer left the company in addition it should be accurate.

Customer-relationship management (CRM) is one of the ways the company interacts with

current or future customers, which is based on historical customer data analysis. Customer

retention is one of the tasks of this management. Data mining techniques are widely used

for customer churn prediction, which provide better prediction performance outweigh their

traditional statistical methods [3]. In this context, companies are collecting and monitor

customer behavior and storing data in databases, where knowledge discovery in database

(KDD) techniques are applied to extract hidden information [4, 5, 6, 7]. The KDD process

consists of: dataset selection, data preprocessing, data analysis, and result interpretation and

evaluation.

Customers datasets are very large, and contains unrepresentative (noisy) data. Such

datasets negatively affect the prediction quality, and require large memory, in addition to

the slow execution speed. Here comes the importance of data preprocessing in KDD, which

used to remove a specific number of noise from the data. On the other hand, dimensionality

reduction (or Feature Selection) aims to select the most representative features over a given

dataset.

4

In most of telecom companies, there are two types of customers: postpaid customers who

are bound by a contract, and prepaid customers who are difficult to churn predict. It is worth

mentioning that both prepaid and postpaid are opposed to each others. Prepaid customers,

who are not obliged to pay monthly bills, and do not receive offers from the service provider

(e.g free calling minutes, call discounts, etc). These customers must charge their call credit to

make outgoing calls, once the call credit is used up, they have to recharge their credit again,

but they can receive calls regardless the call credit. Most prepaid customers are classified as

irregular users, who may not recharge their call credit for long periods, such calling behaviour

that is very hard to predict.

Postpaid customers are obligated by contract with the service provider. After accepting

the terms of the contract, postpaid customers will provide their personal information to the

service provider (e.g name, address, gender, etc). In the opposite, prepaid customers may not

give their personal information when purchasing Sim-cards from the service provider, also

they may share this Sim-card between individuals without notifying the service provider.

1.4.1 Churning

Formally speaking, customer churn is defined as ”the process of subscribers (either prepaid

or post paid) switching from one service provider to the next competitor.” [9]. The benefit

that can be obtained by predicting consumer churn is reducing the probability of customers

leaving and thus maximizing the profits of the company.

Customer churn behavior can adversely affect the company in general by: revenue losses,

reflected negatively on long-term customers, reduce ratio of new customers due to uncertainty

and put the reputation of the company at stake against the competitors in light of the loss

of customers. Furthermore, the costs of attracting new customers are much higher than the

costs of retaining existing customers. And could cause a low sales due to the small number

of short-term customers who buy a service from the company. Finally, it helps to attract

customers who are not satisfied with the service by competitors [63].

Customer churns can be categorized into three types. The first type is active churner

(deliberate, volunteer); in this type the customers quit the contract and move to another

5

service provider. The second type is passive churner (non-Volunteer); where the customers

disconnected by the service provider, usually due to non-payment for a long period of time.

In many cases, the consumer is out of service (churned) before being stopped by the service

provider on the basis of non-obligation to charge calls. In this case, deactivation date is not

suitable for churn prediction. The third type is rotational churner (incidental, silent); where

customers discontinue the contract without the prior knowledge of the service provider, which

make this type hard to predict [10].

Different approaches has been widely used to build predictive model to discover customer

churn patterns such: data mining techniques and statistical methods (e.g linear regression,

logistic regression, etc). We used some of these methods for comparison reason with our

proposed approach (section 6.3). In section 1.5, we present the most common data mining

(DM) techniques.

1.5 Data Mining Techniques

The tremendous evolution of information technology in the past two decades has led to the

existence of large storage media from databases and other repositories. Hence the need to

use robust methods to analyze stored data to help companies extract hidden patterns and

knowledge, which finally support companies to make the right decision [12].

Data mining is one of the most effective methods for recognizing reasonable models, rules

and examples of information. Data mining consists of six stages: classification, estimation,

prediction, group dependence, clustering and description [11]. Many data mining methods

have been used to predict the consumer churn, and most common is decision tree, where the

decision is made according to this method based on the tree branch.

CRISP-DM stands for a cross-industry process for data mining model. The CRISP-DM

methodology provides a structured approach to planning a data mining project [13]. Figure

1.1 illustrates the six phases of CRISP-DM life cycle.

6

FIGURE 1.1: The phases of the CRISP data mining model1.

CRISP-DM is an iterative process, that begins with understanding the nature of the data,

this entails preprocessing data that may be incomplete (e.g missing values) or need conversion

(e.g. categorical into numerical). The next step is building a model capable of extracting

information that benefit companies in decision-making, it is worth mentioning that this model

must achieve a degree of accuracy and performance. The final step is report generation, and

deployment [13].

The following is a review of the most widely used data mining methods of predicting

customer churn:

1. Naive Bayes Classifier:

Naive Bayes is a supervised learning classifier based on Bayesian theorem. It calculates

the probability that a given input sample belongs to a certain class [18], equation 1.1

presents the Bayesian formula for calculating probability.

P (c|x) = P (x|c).P (c)

P (x)
(1.1)

1https://www.datasciencecentral.com/profiles/blogs/crisp-dm-a-standard-methodology-to-ensure-a-
good-outcome

7

2. K-nearest neighbors algorithm:

K-nearest neighbors algorithm is a supervised machine learning algorithm that is used

for both classification and regression problems. It calculates the distances between the

testing sample and the samples in the training dataset based on specific metrics like:

euclidean, chebyshev, cosine, etc. Then it sorts the calculated distances in ascending

order and pick the first k neighbors. The final step is to predict the response based on

neighbors voting, where each neighbor votes for its class feature, then take the majority

vote as the prediction [22]. Although kNN algorithm is easy to implement, it takes

considerable execution time based on dataset size. Algorithm 1 shows the pseudo code

for brute force kNN algorithm.

Algorithm 1 Brute force kNN algorithm

1: Inputs:
Training_dataset,
Testing_instance,
k

2: Outputs:
predicted class

3: Initialize:
List of empty neighbors with k size

4: neighbors = CalcDistance(Training_dataset, Testing_instance, k) //First k neighbors (sorted
ascendly).

5: result = ClassVote(neighbors)
6: Return result

3. Support Vector Machines (SVM):

The SVM is a discriminative classifier that be used for both classification and regression

problems. It creates a hyper-plane with a maximum margin possible between two

classes in the training dataset. SVM uses different types of kernels: linear, nonlinear,

polynomial, Sigmoid, and radial basis function (RBF). SVM have been previously used

for customer churn prediction [32].

4. Neural Networks:

Neural networks are one of data mining techniques inspired by the nervous system in

8

the human brain, where the neural network learns from errors [14], this feature enabled

it to be suitable for Artificial Neural Networks (ANN) [15].

Neural networks overcame the decision trees in a study conducted by Au et al [16], but

it appears that neural networks are unable to detect hidden patterns in many obvious

cases.

5. Decision Trees:

The decision tree is the most common method for predicting customer churn by building

a predictive model that able to predict class (label) from multiple input variables in the

dataset. The decision tree is based on the idea of ”divide and conquer” for binary tree

construction. The tree consists of nodes that represent features (attributes) as inputs

from the dataset, leaves which represent class(label), and branches that present routes

between features and labels [19].

The process of creating a decision tree starts with searching the attribute that contains

the best information gain at the root of the tree, and then the tree is divided into partial

trees (sub-trees) recursively. The partitioning process stops when if no information

gain available, or reach the end of the tree node (leaf node). Figure 1.2 presents a

simplified decision tree for customer churn prediction in telecom industry [18]. Finally

the imbalanced class in the dataset is a critical issue that must be solved during a

preprocessing phase. In term of customers churn, class imbalance happened when the

ratio of passive churner is less than active churner, or vice versa [20].

FIGURE 1.2: A simplified churn prediction decision tree.

There are several decision tree techniques such:

9

• CHAID: It is an acronym for (Chi-squared Automatic Interaction Detector). In

this techniques, chi-square test has been used to figure out the best split at each

step.

• CHAID variant: Is an improvement on traditional CHAID regarding accuracy,

which applying intensive testing and merging of predictors. On the other side,

Because of the large number of calculations, this method is considered slow.

• CART: It is an acronym for (Classification Regression Trees). It splits the features

into non-overlapping regions. This technique is suitable for datasets that include

continuous dependent variables and categorical predictor variables.

• QUEST: Is a statistical tree that uses ANNOVA F-Statistical tests to select fea-

ture, that used to split the tree. This technique is characterized by quick perfor-

mance, efficiency and unbiased.

6. Random Forest (RF):

A Random Forest is an ensemble learning method for regression and classification. It

builds multitude trees randomly at training phase, and the output is the most popular

class (mode) in case of classification, or roughly estimated responses (average) of the

dependent variable in case of regression [25].

In this chapter, we presented a customer churn prediction in telecommunication industry

and its definition; how customer churn can adversely affect the telcom companies. Moreover,

we presented the most common data mining techniques used to solve customer churn problem,

in addition we highlighted research questions, objectives and motivation.

Machine learning is considered one of the well known approaches to solve the customer

churn prediction in telecom companies, which attracted several researchers to conduct studies

in this field. In chapter 2, we will investigate the metaheuristic algorithms 2.1, metaheuristc

for Feature Selection 2.2, parallel metaheuristic 2.3 and customer churn studies 2.4.

10

Chapter 2

Literature Review

In this section, we will provide a literature review on Metaheuristic 2.1, Metaheuristc for

Feature Selection (2.2), Parallel Metaheuristic (2.3) and Customer Churn (2.4).

2.1 Metaheuristic

Metaheuristics are generic strategies to find approximate solutions. In practice, many opti-

misation problems (searching, machine learning, etc.) are NP-hard, where a lot of computing

effort is required to solve them. There are many algorithms within this category such as

grey wolf, Artificial Bee Colony (ABC), Bat Algorithm (BA), etc. Metaheuristic algorithms

are characterized by many pros but suffer from some negatives as well. For instance, Grey

Wolf Optimizer (GWO) counters bias towards the exploitation, on the other hand, Whale

Optimization algorithm employs more exploration over the course of iterations.

Mirjalili et al. [45] proposed nature inspired metaheuristic optimization algorithm, that

mimics the grey wolves social dominant hierarchy. The algorithm contains three phase:

hunting, searching and encircling and attacking the prey. The proposed algorithm has been

compared to several algorithms such GSA, PSO, DE, etc, and the results pointed that GWO

performs was better. Emary et al. [64] proposed a binary version of grey wolf algorithm,

to solve classification problems, which used to select optimal subset of features. They used

special crossover (bGWO1) and Sigmoid function (bGWO2) to transform continuous values

into binary.

11

Mirjalili et al. [49] presented another nature inspired metaheuristic algorithm, that mim-

ics the whale hunting behavior. The proposed algorithm is called (WOA), and consists of

three phases: searching, encircling and attacking the prey. The proposed algorithm shows

remarkable results compared to other algorithms. Mafarja et al. [42] proposed a binary ver-

sion of whale algorithm. The proposed algorithm consists of two approaches: (tournament

roulette) and (evolutionary operators e.g. crossover). Comparing to other FS algorithms

such GA, ALO, etc. The proposed algorithm shows better results.

Kirkpatrick et al. [70] proposed the simulated annealing algorithm (SA), which is a

probabilistic technique to approximate the global minimum for a specific function with large

number of variables. The algorithm is based on metallurgy annealing. Where the material is

heated and cooled to reduce its crystals defects. The algorithm has the ability to avoid local

minima. But there is a trade-off between the quality of the solution and the computation

time.

Nakamura et. al [77] proposed Bat Algorithm (BA) which simulates the bats behavior.A

binary version of this approach has been used in the classification. Where classification

accuracy has been maximized by taking advantage of bat exploration with the optimum

path forest classifier using wrapper model. Features are manipulated using bits string (0:

not selected, 1: selected). Finally, the authors showed that the algorithm outperformed the

algorithms in three out of five datasets.

Karaboga [76], proposed Artificial Bee Colony (ABC) algorithm, which is nature-inspired

optimizer that simulates the swarm behavior of honey bees. The algorithm has an exploitation

mechanism that allows it to be efficient in search. In addition, the algorithm is easy to apply in

many problems. Nevertheless, the algorithm takes too much time in onlooker bee processing

phase.

Kaveh and Farhoudi [52], presented Dolphin Echolocation (DE) approach, which simulates

the hunting and navigation activities of dolphins in nature. The convergence factor has been

readdressed by authors to reach better optimization than used in [78]. The authors claim

that, (DE) have high convergence rates with very good results.

The Genetic algorithm (GA) was first introduced by John Holland [71]. The algorithm is

12

inspired by Darwin’s theory of gene evolution. GA starts with random initial solution, which

evolve over the course of iteration and guided by objective function to reach near optimal

solution. GA encodes the search space parameters by strings (chromosomes), and a group

of chromosomes is called a population. In addition, GA apply’s crossover and mutation

operations over the chromosomes to generate new chromosomes that have better features

[72, 73, 74, 75].

To achieve a balance between exploration and exploitation, a hybrid combination be-

tween different optimization algorithms is used. For instance, Whale optimization algorithm

is hybridized with simulated annealing. Mafarja and Mirjalili [41] conducted a hybrid whale

optimization algorithm with simulated annealing for Feature Selection (FS). In this case,

WOA runs first, and SA comes next to improve the exploitation, which aims to get better

solution. Furthermore, a hybrid between (WOA) and (simulated annealing) has been pro-

posed in a wrapper model. Both low level teamwork hybrid and high level rely hybrid were

used In the low level.

Another hybrid model proposed by [79], which combine differential evolution (DE) and

artificial bee colony (ABC) for Feature Selection (FS). This hybridization includes: new

binary mutation phase, modifying the onlooker bee process to avoid local optima, and taking

advantage of (DF) convergence nature (fast nature).

Mafarja et al. [39] proposed a hybrid meta-heuristic algorithm which combines Grasshop-

per optimization Algorithm (GOA), Evolutionary Population Dynamics (EPD) algorithm,

and selection operator. Where algorithms work concurrently to increase efficiency and to

avoid local optimum of (GOA). The proposed algorithm aims to direct the search toward

promising areas by removing poor solution. The authors claim the superiority of this ap-

proach compared to other Feature Selection mentioned in the literature.

2.2 Metaheuristc for Feature Selection

Feature Selection (FS) is considered a dimensionality reduction (DR) technique used to re-

move redundant features in dataset. Moreover, FS is an NP-hard problem regarding searching

13

for the most informative features, where traditional algorithms can not be applied, instead

meta-heuristic algorithms are suitably used by approximation.

Stjepan et al. [80] proposed a hybrid genetic algorithm with a neural network (HGA-NN).

The proposed approach works in wrapper model, which enhances results by removing not

important features in the dataset, and enhancing the initial population by incremental genetic

algorithm stages. The algorithm applied to solve credit risk assessment system problem. The

authors claim that this approach has been a good addition to data mining techniques.

Authors in [81] proposed a hybrid algorithm which combines Particle swarm optimization

(PSO) algorithm with local search strategy to solve (FS) problems. In this model, the

local search was included in the PSO to guide the search process to select features through

correlation information. The statistical tests has been conducted, and the results showed the

superiority of proposed approach in term of accuracy.

Antlion optimization (ALO) is another nature-inspired meta-heuristic algorithm used in

FS. Antlion mimics the hunting behavior for antlions in nature. Emary et al. [82] proposed

a binary version of the antlion in wrapper model by using transfer functions (v-shaped, s-

shaped or basic operators). The authors claim that their approach have the ability to produce

optimal solutions regardless of the initial population. Zawbaa et al. [83], proposed another

wrapper FS based on (ALO), where the classification accuracy used as objective function.

Nguyen et al. [84] presented a hybrid model based on PSO for FS. Where a local search

mechanism works near FS method. The algorithm takes advantage of both wrapper and

filter methods. Where classification error is used as fitness function (wrapper), and filter as

a measure. The authors showed that, the proposed approach have better performance.

2.3 Parallel Metaheuristic

The use of independent parallelism model in S-metaheuristics and P-metaheuristics algo-

rithms is not new. A famous example for S-metaheuristics is the multistart local search,

which is a model that use local search algorithms that works concurrently to find near op-

timal solution (e.g simulated annealing, local search, tabu search and others) that have its

14

own independent initial solutions, and possibly different parameters like size of tabu [85, 87].

Several algorithms can be used together (heterogeneous algorithms) to find the solution in

the parallel model. This type is called the cooperative Model, where algorithms exchange

information among themselves to reach a solution.

2.3.1 Parameter Level

Kennedy [88] applied k-means clustering on PSO to improve the performance using parallel

model. Where k-means clustering is used to divide swarm into clusters of particles, and each

particle represents a segment in the search space and works in parallel.

Tongchim and Chongstitvatana [89] proposed an adaptive mechanism for parameter adap-

tation in parallel genetic algorithm. The algorithm aims to adjust parameters during the

the search process. Where the populations are divided into smaller sub-populations. The

sub-populations are evolve in parallel and independently. After a specific time, some sub-

populations exchange information at the a migration process in order to find the solution.

The proposed algorithm adjusted four parameters: crossover rate, mutation rate, crossover

operator, and mutation operator. The authors claim that, the proposed algorithm outper-

forms the other algorithms in term of performance under benchmark problems.

2.3.2 Search Level

Alba et al. [90] presented the gradual distributed real-coded GA (GD-RCGA). The proposed

model runs eight populations simultaneously in a cubic topology which includes sparse in-

dividuals. The topology consists two faces to reflect exploitation and exploration. In this

papers, two local area networks has been used to experiments the proposed algorithm. The

authors found that this model is more effective and gives better results with continuous op-

timization. In addition, they found that the asynchronous parallelization outperforms the

synchronous parallelization.

15

2.3.3 Algorithm Level

Ram et al. [91] proposed two distributed algorithms for simulated annealing: clustering

algorithm (CA) and genetic clustering algorithm (GCA). The algorithms were applied to

solve both traveling salesman problem (TSP) and job shop scheduling problem (JSS). The

(CA) uses a cluster of nodes, where each node runs a simulated annealing algorithm. The node

exchanging information between each other in order to have a good convergence. The (GCA)

starts with genetic algorithm to generate initial population, which is used by distributed

simulated annealing nodes over the network. It worth mentioning that, both algorithms were

implemented using Distributed Problem Solver platform (DiPS), with 18 network node that

run Sun workstations. The authors showed that, the proposed algorithms have very good

solutions in term of execution time and solution quality.

2.4 Customer Churn

In this section, we will present the researches conducted to predict customer churn using

different methodologies and approaches. Table 2.1 illustrates the information about the

prediction approaches used for customer churn and the important results sorted by research

year (chronological order).

According to experiment conducted by Qureshi et al. logistic regression achieved good

results with 78% accuracy of total number of active churners [15]. In other research, conducted

by Nie et al. regression has been combined with decision trees to create a predictive model for

telecom customer churn [28], they found that, the graded regression is better than decision

trees. Nath and Behara applied Bayesian model to predict customer churn in a wireless

company. The result of this research was only 68% of accuracy [29].

Zhang et al. conducted a research based on combination of both knearest neighbor al-

gorithm and logistic regression method as a hybrid system to build binary predictive model.

They named the proposed algorithm KNN-LR. Furthermore, they compared the proposed

algorithm with the following algorithms: original logistic regression, radial basis function

16

(RBF) network and C4.5 decision tree. The result of the research was the superiority of the

proposed algorithm [30].

Huang Kechadi proposed a novel model. The proposed model combines modified k-means

clustering algorithm with a classic rule inductive technique (FOIL). The results of the study

showed that the proposed system was outperforming the comparison techniques that were

used such: original k-means, decision tree, logistic regression, PART, etc [31].

Sharma and Panigrahi [17] conducted a search for cellular wireless services. They proposed

a neural network-based approach for customer churn prediction. Their experiment achieved

(92%) of accuracy on dataset obtained from UCI repository.

Decision tree has been carried out to solve customer churn problems. Jahormi et al.

developed a predictive model for customer churn in pre-paid mobile telephony organizations

using C5.0 decision trees technique with neural network. Their finding was decision trees is

better than neural networks regarding performance [21].

Kaur et al. conducted a bank customer churn experiment, to discover the significant

features of customers. In their study, they used Naive Bayes, support vector machines

(SVM), and J48 decision tree. They concluded that success prediction of churn class is

larger than loyal class success prediction [22]. In another study conducted by Soein and Rod-

pysh. They found that CART decision tree performed better than other techniques (C5.0,

QUEST, CHAID, Bayesian networks and Neural networks) [23]. Moreover, a hybrid evolu-

tionary approach has been conducted by Yeshwanth to churn prediction in mobile networks.

This approach combines Genetic algorithm with J48 decision. The result of this study showed

that (72%) accuracy when applied to a large telecom company [24].

Web Chin-Ping Wei and I-Tang Chiu [65] used the decision tree approach C4.5 for cus-

tomer retention analysis. Keaveney [66] conducted a survey to discover churn reasons. The

study indicates that: Core Service Failure (CSF) or Service Encounter Failure (SEF) will

cause the customer to switch the service into another companies. B. Padmanabhan et al.

[67] consider that customer response and service quality are the drivers of customer churn.

Bloemer et al. [68] assumed a direct relationship between customer satisfaction and the qual-

ity of service. Finally, There are several methods to predict customer churn, including: Naive

17

Bayes and Bayesian network [6] which improved the prediction rates over the C4.5 decision

tree, regression analysis [69], neural networks [4, 10], decision trees [6, 69], and support vector

machine (SVM) [32].

From the previously studied works. Customers churn prediction is one of the biggest

challenges for telecom companies. Telecom companies suffers from the high dimensional

dataset due to advances in storage technologies. Moreover, the customers dataset contains

unrepresentative (noisy) data, which negatively affect the prediction quality, and require large

memory, in addition to the slow execution speed. Data mining is a promising solution used

to build predictive model to discover customer churn.

Dimensionality reduction is the key solution to build an accurate customer churn model

to avoid problems such as model over fitting. Feature Selection (FS) is used to achieve

data reduction by choosing the important features. It is worth mentioning that, the Feature

Selection (FS) is an optimization problem. Optimization problems are complex and require

intensive resources. In this regards metaheuristic algorithms found to be the natural fit to

solve such problems with near optimal solutions. Exploration and exploitation are the core

design aspects in metaheuristic algorithms. Exploration is the process to find new promising

solutions, on the contrary, exploitation is the process of improving the current promising

solution.

Grey Wolf Optimizer (GWO) is a metaheuristic algorithm that mimic the social dominant

hierarchy and hunting mechanism of the wolf. Grey Wolf Optimizer (GWO) is the most cited

algorithm with more than 2000 citation indexes based on Science Direct website, which

motivated us to adopt this algorithm in this thesis.

Finally, the sequential metaheuristics algorithms are considered inappropriate in terms of

executing time. Therefore, the use of parallel metaheuristics algorithms is preferred to avoid

this problem. In this regard, one can observe that the parallel form of the metaheuristics

algorithms with feature selection (FS) has been rarely investigated through the literature

reviews to solve the customer churn prediction.

18

Author Year Approach Obtained Results
Qureshi et
al.

2013 Logistic regression 78% accuracy.

Huang &
Kechadi

2013 Modified K-means
clustering algorithm
with classic rule in-
ductive technique
(FOIL)

Better than original K-means, decision tree,
logistic regression, PART, etc.

Kaur et al. 2013 Naive Bayes, sup-
port vector machines
(SVM), and J48 deci-
sion tree

Success prediction of churn class is larger
than loyal class success prediction.

Clement
Kirui et al.

2013 Probabilistic Classi-
fiers

Improved prediction rates for all the models
used.

I. Brandu-
soiu & G.
Toderean,

2013 Support Vector Ma-
chines

The model that uses the polynomial kernel
function performs best with 88.56% accuracy.
The models RBF, LIN, and POL have 80% ac-
curacy.

Soein &
Rodpysh

2012 C5.0, QUEST, CART,
CHAID, Bayesian Net-
works and Neural net-
works

CART decision tree performed better than
other techniques.

Nie et al. 2011 Logistic regression
with decision trees

The test result graded regression ahead of de-
cision trees.

Sharma &
Panigrahi

2011 Neural Network 92% accuracy.

Yeshwanth 2011 Genetic algorithm
with J48 decision

72% accuracy.

B. Pad-
manabhan
et al.

2011 Churn study Service quality and customer response are
two important drivers of churn.

Jahormi et
al.

2010 C5.0 decision tree with
Neural Network

Decision trees is better than Neural Network.

Zhang et
al.

2007 K-nearest neighbor
with Logistic Regres-
sion

Better than original Logistic Regression, ra-
dial basis function and C4.5 decision tree.

Nath & Be-
hara

2003 Bayesian model 68% accuracy.

Web Chin-
Ping Wei
& I-Tang
Chiu

2002 C4.5 decision tree Used on customer retention analysis and pre-
diction.

Bloemer et
al.

1998 Churn study Assumed a direct relationship between cus-
tomer satisfaction and the quality of service.

Keaveney 1995 Survey to discover
churn reasons

Core Service Failure or Service Encounter
Failure will cause the customer to switch the
service into another companies.

TABLE 2.1: Literature review summary: prediction approaches used for cus-
tomer churn.

19

Chapter 3

Background

In this chapter, a theoretical background about Feature Selection (FS) methods is presented

(3.1), followed by a description about the metaheuristics approaches in general (3.2), and

illustrating in depth the original Grey Wolf Optimizer and its binary (3.3). Finally presenting

the development frameworks that used to write the the proposed algorithms.

3.1 Feature Selection

It is important to choose the right features before creating customer churn prediction model

(dimensionality reduction). Large features set may include irrelevant attributes in customer

churn. Therefore, increase model complexity, prediction slowness, low accuracy ratio, and

over-fitting problem, which make the model dedicated to specific dataset. The features consist

mainly of billing data, call statistics, demographic data and others [33, 34].

The Feature Selection (FS) objective is searching for the minimum attributes that meet

a certain criterion to build a prediction model that achieves the highest degree of accuracy

[35]. It is worth mentioning that Feature Selection is considered an NP-Hard problem [37].

The Feature Selection process consists of four phases [38], as shown in Figure 3.1:

• Feature subset generation: At this stage a partial set of attributes is searched using one

of the following search methods: complete, random or heuristic [39]. The process of

creation subset may begin with empty set without variables and add them one by one

20

until decrease the error (forward), full set with all variables and remove them one by

one till highest accuracy is reached (backward), or random set to achieve the highest

accuracy.

• Evaluation functions: The generated subsets in the previous phases are evaluated by

using filter and wrapper models [36]. The evaluation functions measure the quality of

generated subset.

• Stopping Criterion: Stop the Feature Selection process if the criterion is met, or prevent

complete search.

• Validation: This phase is not considered part of the Feature Selection process, but is

used to validate the accuracy of the attributes. It is an iterative procedure to create a

classifier from the training data and validate its accuracy, using testing data, till gain

the highest accuracy.

FIGURE 3.1: Feature selection process [38].

3.1.1 Feature subset generation

Feature subset generation, is the process of searching the best subset of features. This

process is considered complex. Theoretically speaking, a Feature Selection method must

search all possible combinations to find optimal or near-optimal features, on other words,

21

Feature Selection must search 2N features, so it grows exponentially when N increases, where

2 is the binary representation of feature (0: no selected, 1:selected), and N is the total number

of features [40].

Complete Search

As mentioned before, the complete search searches all possible combinations of features 2N

until reach the optimal subset that achieves the highest accuracy. So this method guarantees

the optimal solution, but needs tremendous computational power and long searching process

[41] which make this method infeasible for huge datasets.

Random Search

In this type of search method, features are searched randomly, which is also called non-

deterministic search [40]. Because of the random nature. The solution (optimal features)

could be found during the early stages of the search process which represent the best case.

But it may need to visit the whole features just like complete search which represents the

worst case.

Heuristic Search

Heuristic search is a technique used frequently when traditional methods are taking too

much time to find the solution, or to find near-optimal solution by approximation when

traditional methods fail. Heuristic methods use the minimum information available to execute

the effective search without the need for all features combinations. There are two types of

heuristic methods: general purpose meta-heuristics to solve a wide range of problems, and

specified heuristics to solve specific types of problems [40, 42].

Meta-heuristics algorithms proved to be effective in solving optimization problems com-

pared with other approaches like complete search. There are a many meta-heuristics al-

gorithms, including: genetic algorithm [43], gravitational local search [44] and Grey Wolf

Optimizer (GWO) algorithm [45], and others.

22

3.1.2 Feature evaluation functions

Feature evaluation phase comes right after the feature subset generation. In this phase, eval-

uation functions will be used to measure the goodness of the generated subset. Additionally,

the evaluation function result will be compared with previous results, and the best result

will be kept, over the course of the iteration. It should be noted that the use of different

evaluation functions in the same dataset will generate different results [38].

As mentioned earlier, evaluation functions are categorized into two approaches: filter and

wrapper. In filter approach, selected subset is evaluated based on the data regardless of

learning algorithm, it uses statistical methods like distance in the evaluation process, unlike

the wrapper approach which use a classifier to evaluate a features subset [42].

Filter Approach

Filter approach is highly depends on training data that generated from feature generation

phase, instead of using learning algorithms. Moreover, the filter approach does not correlate

between features. This approach consists of two phases as shown in Figure 3.2. The first

phase uses statistical methods like distance, t-test, F-test, etc. to measure the goodness of the

features to be selected. The second phase, which is similar to wrapper approach. Finally, the

filter approach is considered fast; because it have non-iterative computation on the dataset.

On the other hand, filter fitness functions are often monotonic, so the filter tends to select

the full features as the optimal solution [40].

23

FIGURE 3.2: A filter approach of Feature Selection.

Wrapper Approach

The wrapper approach uses the classifier accuracy to measure the performance of selected

subset. This approach aims to maximize predictive accuracy by reducing the error rate. As

shown in Figure 3.3, wrapper model consists of two phases: Feature Selection subset phase

and learning / testing phase. The first phase is an iterative process that generates subsets,

where the accuracy of each subset is calculated. At the end of the process, the highest

subset will be selected. In the second phase, the generated subset with highest accuracy that

obtained in previous phase will be used in the learning algorithm over the training data, then

the result will be compared to a testing dataset for accuracy measurement [40].

Finally, the wrapper approach achieves high degrees of accuracy compared to filter ap-

proach; because they are adjusted to specific interactions between the dataset and the classi-

fier. Wrappers use use cross-validation technique to avoid over-fitting problem. But wrappers

are slow; since a classifier must be trained for each feature. In addition, wrappers are tied to

classifier bias, which make the solution lack of generality.

24

FIGURE 3.3: A wrapper approach of Feature Selection.

3.1.3 Feature stopping Criterion

Feature stopping criterion is a necessary step, in order to prevent the algorithm from entering

an infinite loop; which may reduce computer resources, especially main memory, and causes

the algorithm crash. The algorithm stops searching in general according to occur one of the

following conditions [40]:

• Reach the loop limit of the algorithm (maximum iteration).

• The search execution time is finished, in case using time instead of iterations.

• Reach the complete search.

• Obtain an acceptable degree of feature subset quality (accuracy).

It is worth mentioning that, the stopping condition is also important to prevent optimiza-

tion algorithms (e.g GWO) from reaching the minimum features that represent the highest

accuracy values. In the case of a customer churn dataset in telecom companies, it is possible

to reduce the dataset from tens of features into couple of features, which cause to create

unrealistic and wrong predictive model.

25

3.2 Metaheuristics

Optimization methods are found in different subjects, including: engineering, computing

and even everyday life, where maximizing or minimizing are being used to solve problems.

For example, companies use optimization methods to maximize their sales while minimizing

losses [47]. In a practical, it is known that finding the optimal solution or complete search is

considered an expensive process and time consuming. Accepting a relatively reasonable and

not optimal solution is therefore the way out of the impasse, and here comes the metaheuristic

algorithms ways to do this work [46]. It is worth mentioning that the study of optimization

problems is in fact very old and goes back to the Greek era [47]. The word ”metaheuristic” is

originally Greek. It consists of two parts: the first part is ”meta” which means ”upper level

methodology”, and the second one is ”heuristic” which means exploring new ways (strategies)

to solve problems; The first use of this term was by F.Glover in 1986 [46].

Metaheuristic search methods can be defined as ”upper level general methodologies (tem-

plates) that can be used as guiding strategies in designing underlying heuristics to solve

specific optimization problems” [46]. Another definition for meta-heuristic was mentioned in

the literature as follows: ”is a group of techniques that guides the search process. The main

objective of this method is to effectively explore the search space to find the best solutions”

[48].

Based on the literature, there are many optimization algorithms such as: Grey Wolf

Optimizer (GWO) [45], whale optimization algorithm [49], ant colony optimization [50], and

others.

Exploration and exploitation are the core design aspects in metaheuristic algorithms.

Exploration is the process to find new promising solutions which has not been inferred yet,

the high exploration leads to fast convergence, but reduce the quality of results. On the

contrary, exploitation is the process of improving the current promising solution, the high

exploitation leads to local optima problem; which is the best solution within neighbors. To

overcome this problem, a hybrid combination between different optimization algorithms is

used [41].

26

The following sub-sections show two types of metaheuristic algorithms, namely single-

based and population-based. Single-based metaheuristics improves one solution over the

course of the iteration. Whereas, population-based improves a set of solutions over the

course of iterations to find near optimal solution [46].

3.2.1 Single-Based Meta-heuristic Algorithms

Single-Based metaheuristic (S-metaheuristics) is an iterative procedure that ends with a given

stopping criteria and consists of two steps as shown in figure 3.4. The first step is candidate

solutions generation from the current solution; usually through transformations. The second

step is the replacement, where a solution is chosen from the set of candidate solutions and

replace the current solution [46].

S-metaheuristics can be used without the use of memory, so above procedures relies com-

pletely on the current solution. In contrast, memory can be utilized to store the search

history. Finally, S-metaheuristics algorithms are exploitation oriented, making them vulner-

able to local optima. A famous example of S-metaheuristics is simulated annealing [41].

FIGURE 3.4: Main principle of the single-based solution algorithm.

3.2.2 Population-Based Meta-heuristic Algorithms

Population-based metaheuristics (P-metaheuristics) can be seen as a general state of (S-

metaheuristics), it is also an iterative procedure that stops when a given condition is satisfied.

P-metaheuristics consists of two phases: the generation and the replacement. This procedure

27

begins from an initial population of solutions, then generate a new population and finally,

replace the current solution iteratively [46], as shown in figure 3.5.

FIGURE 3.5: Main principle of the population-based solution algorithm.

In practice, it is important to diversify the initial population to avoid premature conver-

gence problem. Following are strategies for generating new population:

• Evolution-based: this strategy uses different operators like mutation and crossover on

the current population in order to generate a new one.

• Blackboard-based: this strategy utilizes the solutions available in the current population

to generate new one.

In addition, population replacement includes two strategies:

• Replaces the population with a new generated one.

• Chooses the best solution from both the old and new generated populations to find the

subsequent solution.

The stopping criteria in the population-based algorithm is either static or adaptive. In

the static, the stopping criteria is known and predefined in the algorithm. In the adaptive,

the stopping occurs based on the state of the algorithm [46].

P-metaheuristics may be memoryless, in this case, both generation and replacement

phases depend on the current population. �Memory can also be used, where searching his-

tory are stored in memory and used to create new populations (solutions) [46]. Algorithm 2

illustrates P-metaheuristics pseudocode. Furthermore, population-based algorithms is explo-

ration oriented.

28

Algorithm 2 P-metaheuristics pseudocode

1: Initialize:
P = P0; //Generation of the initial population
t = 0;

2: Outputs:
Best solution(s) found.

3: repeat
4: Generate(P’t); // Generation a new population
5: Pt+1 = Select-Population(Pt ∪ P’t) // Select new population
6: until Stopping criteria satisfied.

The majority of P-metaheuristics algorithms are nature-inspired. There are many nature-

inspired P-metaheuristics such as evolutionary algorithms (EAs), particle swarm optimization

(PSO) and bee colony (BC) [46].

3.3 Swarm Intelligence Algorithms

Swarm intelligence algorithms are inspired by the social behavior of species that compete for

foods such as ants, bees, fish, birds and wolves [46].

In terms of Feature Selection (FS), many algorithms have been applied in this field, but

the meta-heuristic algorithms have proven to be the best. Examples of these algorithms are

particle swarm optimization [51], dolphin algorithm [52], and gery wolf optimizer [45]. The

following subsections describe Grey Wolf Optimizer (GWO) (3.3.1) in the details, and its

binary version (3.3.2).

3.3.1 Gery Wolf Optimizer (GWO)

Grey wolves live in a pack with group size between (5 - 12) on average. They live in social

dominant hierarchy as shown in Figure (3.6).

The pack of Grey wolf consists the following according to [45]:

1. The alpha wolves are leading the pack, making decisions, and their decisions are dictated

to the pack.

29

2. The betas are the second level of hierarchy that probably be a candidate to alpha, the

betas are assisting the alpha in making decision.

3. The Omega are the lowest level in the hierarchy, they have to submit to all upper levels.

4. The deltas have to Obeys alphas and betas, but they control the omega. This category of

wolves contains: scouts, sentinels, hunters, caretakers, and elders (experienced wolves)

who considered to be alpha or beta candidate.

FIGURE 3.6: Grey wolf Hierarchy (dominance increasing from down top) [45].

The Grey wolf starts hunting by Tracking and chasing the prey, next the wolves pursuing

and encircling the prey. Encircling behavior could be mathematically modeled using the

following equations :(3.1), (3.2), (3.3), and (3.4). Finally the wolves attack towards the prey.

The best solution based on Grey wolf mathematical model is: alpha (α), beta (β) and delta

(δ) respectively; which they guide the hunting, and finally omega (ω) follow these three

candidates.

~X(t+ 1) = ~Xp(t) + ~A. ~D (3.1)

Where: ~D is defined in equation (3.2), t is the iteration number, ~A and ~C are coefficient

vectors, ~Xp is the prey position, and ~X is the gray wolf position.

~D = |~C. ~Xp(t)− ~X(t)| (3.2)

A 2D position space and selected possible neighbors are illustrated in Figure (3.7)(a) that

present the effects of equations (3.1) and (3.2), as shown in the figure the Grey wolf can

30

update its position (X, Y) randomly based on the position of the prey (X*, Y*); where ~A

and ~C vectors are adjusted to reach any place around the best agent. On the other hand a

3D position space is illustrated in Figure (3.7)(b).

FIGURE 3.7: wolves position vectors in 2D and 3D [45].

The ~A , ~C vectors are calculated as in equations (3.3) and (3.4).

~A = 2a.~r1 − a (3.3)

~C = 2~r2 (3.4)

where: (a) is linearly decreased from 2 to 0 over the course of iterations according to the

equation (3.5), and r1 , r2 are random vectors in [0, 1].

a = 2− t
2

MaxItr
(3.5)

Where: (t) is the iteration number and MaxIter is the total number of iteration allowed

for the optimization.

Equation (3.6) represents updating wolves positions:

~Xt+1 =
~X1 + ~X2 + ~X3

3
(3.6)

31

Where: ~X1 , ~X2 , ~X3 are defined as in equations (3.7), (3.8), and (3.9) respectively.

~X1 = | ~Xα − ~A1. ~Dα| (3.7)

~X2 = | ~Xβ − ~A2. ~Dβ| (3.8)

~X3 = | ~Xδ − ~A3. ~Dδ| (3.9)

Where: ~Xα , ~Xβ , ~Xδ are the first three best solutions in the current iteration t, ~A1 , ~A2

, ~A3 are defined as in equation (3.3), and ~Dα , ~Dβ , ~Dδ are defined using equations (3.10),

(3.11), and (3.12) respectively.

~Dα = |~C1. ~Xα − ~X| (3.10)

~Dβ = |~C2. ~Xβ − ~X| (3.11)

~Dδ = |~C3. ~Xδ − ~X| (3.12)

Where: ~C1 , ~C2 , and ~C3 are defined as in equation (3.4).

The location of prey is estimated by alpha, beta, and delta as shown in figure (3.8). Alpha

will get exploration when |A| > 1 and exploitation when |A| < 1. Finally, the algorithm is

terminated by end of iterations, or by reach minimum or maximum solution. Algorithm (3)

represents the pseudo code for GWO algorithm.

3.3.2 Binary Gery Wolf Optimizer (BGWO)

In the Feature Selection (FS) we use a binary number to either select the attribute (1) or

not select (0), in this case we need to modify the original version of Grey wolf, which uses a

continues values in the search space to restricted binary (0, 1).

32

FIGURE 3.8: Position updating in GWO [45].

The binary version of the algorithm starts by initializing a two dimensional matrix that

represents the positions of search agents (wolf position) filled with zeros and ones randomly.

then we update the position of α, β and δ as the original Grey wolf algorithm as well as

updating (a) parameter which is linearly decreased in interval [2,0]. The last step in the

main course of the algorithm iteration is updating the wolves positions by using Sigmoid

function as shown in equation 3.13, where Sigmoid(x, a, c) is a mapping on a vector x, and

depends on two parameters a = 10.0 and c = 0.5. Figure 3.9 illustrate Sigmoid function.

Sigmoid(x, a, c) =
1

1 + exp−a(x−c)
(3.13)

Then the position of wolves α, β and δ are calculated based on 3.13 as shown in equations

3.14, 3.15 and 3.16 respectively.

Sigmoid(−A1 ∗D_alpha, 10, 0.5) (3.14)

33

Algorithm 3 Grey Wolf Optimizer (GWO) algorithm pseudo code

1: Initialize:
GWO population xi(i = 1, ..., n)
n=0

2: Outputs:
Xα //best solution

3: while n < Max_iterations do
4: for all agent ∈ population do
5: adjust agent boundaries
6: calculate the objective function
7: update Xα, Xβ , Xδ

8: end for
9: calculates (a) parameter by equation(3.5)

10: for all agent ∈ population do
11: calculate (A) parameter by equation(3.3)
12: calculate (C) parameter by equation(3.4)
13: update current agent position by equation (3.6)
14: end for
15: n = n + 1
16: end while

FIGURE 3.9: Sigmoid function.

Sigmoid(−A1 ∗D_beta, 10, 0.5) (3.15)

Sigmoid(−A1 ∗D_delta, 10, 0.5) (3.16)

34

It is worth to mention here that we have to make sure that wolves positions must be zero

or one when updating wolf position as shown in algorithm 4.

Algorithm 4 Binary version of updating wolf position

1: s = Sigmoid(...) //as shown in equations 3.14, 3.15 and 3.16
2: if s <random then
3: v = 0
4: else
5: v = 1
6: end if
7: if wolf_current_position at iteration + v >1 then
8: wolf_position = 1
9: else

10: wolf_position = 0
11: end if

Since we do not have an idea about the location of the optimum solution, we will take a

crossover operator between the three wolves instead of the average as the continues version

of the algorithm as shown in function 5.

Algorithm 5 Binary BGWO cross over function

1: procedure CROSSOVER(x1, x2, x3)
2: r = random
3: if r <0.333 then
4: return x1
5: else
6: if r <0.666 then
7: return x2
8: else
9: return x3

10: end if
11: end if
12: end procedure

A KNN classifier is used as a wrapper approach in the fitness function to evaluate the

solution in Feature Selection (FS) is a combination of minimum number of features and

highest accuracy. So the fitness function will be a minimization problem as shown in equation

3.17.

fitness = (1− SzW) ∗ (1− accuracy) + SzW ∗ features_sum

dimension
(3.17)

35

Where: SzW is a constant with a value 0.01, accuracy is the KNN accuracy which is, the

ratio between the number of correct predictions over the total number of instances in testing

training set, features_sum is a sum of ones in the current search agent, dimension is the

size of search agent.

3.4 Development Frameworks

In this section we will present the development frameworks that used in development process

of our proposed algorithms. Both OpenMP and Shark will be discuss in details at section

3.4.1 and section 3.4.2.

3.4.1 OpenMP

In this thesis, OpenMP framework version 2 is utilized to parallelize the sequential (BGWO).

OpenMP is an acronym for Open Multi-Processing, its an open specification for multi process-

ing API for defining multi threaded shared programs. This framework supports C/C++ and

Fortran programming langaues. In addition, OpenMP consists of three main parts: runtime

library, compiler directives (pragma) and environmental variables [53].

OpenMP is able to parallelize a sequential code, by adding simple directives. First, the

code starts with one master thread, and then a number of threads are created (fork) in the

parallel regain. Once the the parallel tasks are finished, all created threads will be destroyed

(join), as shown in figure 3.10.

FIGURE 3.10: OpenMP execution model.

36

Habbas et al. pointed to the importance of using OpenMP for applications parallelization.

Following are benefits of using OpenMP:

• No Message passing required, also it is not used in our thesis.

• OpenMP directives may be incorporated incrementally.

• Easy to transfer sequential code into parallel.

• Generates small code size (lightweight).

• It helps to write a parallel code that is easy to read.

• Portability, because of its standard, the code written using OpenMP can be ported to

different platforms e.g. Windows, linus, MacOSX, etc.

On the other side, OpenMP has few drawbacks, which is not scalable as MPI, and dedi-

cated to shared memory systems exclusively. Such drawbacks is not important in our thesis,

since we are targeting Intel machine (shared memory system).

3.4.2 Shark

Shark is used to facilitate our parallel BGWO, in order to take advantage of its helpers

functions, and algorithms. SHARK is a fast, modular, portable and feature-rich open-source

C++ machine learning library [58].

The main purpose of using Shark is to speed up the programming process and save time.

For example, instead of implementing: parallel KNN classifier, dataset reader, classifier

evaluation, etc. Shark bundled with lots of such procedures. In addition, Shark will use

available processors internally to speed up the performance. So, Shark is implicitly have an

iteration-level parallel model, this seems obvious in calculating KNN distances. Figure 3.1,

shows the list of Shark functions used in BGWO.

37

Function name Description

importCSV Import dataset from CSV based file

shuffle shuffle the dataset

splitAtElement split the dataset into training and testing

makeIndependent copy the dataset into process memory

KNN calculate K nearest knebiour

loss calculate the data loss (error rate)

TABLE 3.1: Functions used from Shark framework.

38

Chapter 4

Parallel Metaheuristics

Optimization problems are complex, NP-hard, and require intensive resources (CPU time

and/or memory consumption) in diverse domains of Real-life applications. Metaheuristics

found to be the natural fit to solve such problems with near optimal solutions; to reduce the

computational complexity of the search process [46].

On one hand, the search space is huge in complex optimization problems, which means

more resources will be acquired by the fitness function of metaheuristics algorithms. Thus, the

sequential metaheuristics algorithms are considered inappropriate in terms of executing time.

Therefore, the use of parallel metaheuristics algorithms is preferred to avoid this problem

[46].

On the other hand, the technological advancement in the manufacture of processors (e.g.

multicore processors), networks (e.g. Infiniband) and storage media (e.g. solid-state drive),

moreover, the cost/performance ratio is constantly decreasing. These factors played an im-

portant role to adapt parallel mechanisms in metaheuristics algorithms [46].

Following are the advantages of using parallel and distributed computing in meta-heuristics

design [46]:

• Reduce the search time: optimization problems need big number of iterations to reach

the solution, so using parallelizing in meta-heuristic will reduce the search time in

exploration and exploitation by splitting the iterations among processors.

39

• Enhance solution quality: by passing messages between processes in parallel environ-

ment, this kind of communication will change meta-heuristics searching behavior in the

landscape which usually leads to better convergence and reduced search.

• Improve the robustness: the strength of the parallel metaheuristic is its ability to solve

multiple problems efficiently. Also in term of meta-heuristic parameter sensitivity.

• Solve large-scale problems: the ability of parallel meta-heuristic to solve a wide range

of problems that cannot be solved by a sequential method. In addition, improving the

accuracy (e.g. increasing the number of iterations will increase the chance to have good

results).

Finally, the parallel meta-heuristic depends on target architecture, parallel programming

language, middle-ware, and the employed techniques; such as shared memory (e.g. POSIX

threads, OpenMP), remote procedural call (e.g. ONCRPC, protobuf/ZMQ).

4.1 Parallel and Distributed Architectures

Parallel and Distributed Architectures have many taxonomies based on: traditional Flynn

classification, memory organization, processor granularity, processor synchronization, and

interconnection architecture.

According to Flynn [46], parallel architectures are based on two criteria: the number of

instructions, and the number of data. Following are the four classes for parallel architectures:

• SISD (single instruction stream-single data stream): it is the traditional type of com-

puters, where a single processing unit (mono-processor) receives a single stream of

instructions that operate on a single stream of data, as shown in figure 4.1. It must be

noted that this type has been used less recently and is on its way to extinction.

FIGURE 4.1: SISD computers.

40

• MISD (multiple instruction streams-single data stream): a multiple instruction streams

are executed on a single data stream. This type of parallel consists of N processors,

each with its own control unit, share a common memory, as shown in figure 4.2. In

practice, this type does not exist.

FIGURE 4.2: MISD computers.

• SIMD (single instruction stream-multiple data streams): in this type of parallel, where

N processors operate under the control of a single instruction stream issued by a central

control unit, and each processor has its own data streams, as shown in figure 4.3. SIMD

is simple and scalable, but it is expensive and requires specific programming model.

FIGURE 4.3: SIMD computers.

41

• MIMD (multiple instruction streams-multiple data streams): In MIMD design, there are

multiple independent processors, where each processor can execute different instructions

on different data, as shown in figure 4.4. Standard component (e.g network, processors)

are employed in this type of parallel.

FIGURE 4.4: MIMD computers

Taxonomy based on memory organization consists of: distributed memory and shared

memory (e.g. UMA, NUMA). In distributed memory, each processor has its own memory,

and the communication preformed between processors by message passing. In shared memory,

a single address is shared by all processors. Another taxonomy, which is processor granularity,

it contains three sub-type: coarse grained (limited powerful processors), fined grained (many

small processors) and medium grained (hybrid between coarse and fined). The taxonomy

based on processor synchronization could be asynchronous with independent clocks for each

processor, fully synchronous with global clock for all processors and bulk-synchronous which

is considered a hybrid between the previous types. Finally taxonomy based on interconnection

architectures, where the network is utilized statically (e.g. point-to-point), or dynamically

(e.g. using switches, crossbar, buses) [46].

42

4.1.1 Dedicated Architectures

In addition to above parallel mechanisms, it is possible to take advantage of some dedicated

hardware to implement parallel metaheuristic algorithms. Field programmable gate arrays

(FPGAs) and graphical processing unit (GPU) are well known examples of dedicated hard-

ware. As mentioned before, metaheuristic algorithms required heavy resources, so dedicated

hardware can assist CPU to do other jobs by executing different tasks on their boards. For

example calculating KNN into GPU and its results goes to CPU to calculate fitness function

[46].

4.2 Parallel Programming Environments and Middlewares

Middleware is a software layer located between the operating system kernel and user appli-

cation, which facilitates the development of software through hiding distributed applications

complexity and providing a generic interface to make applications portable and reusable. The

parallel architectures mentioned in the previous section play an important role in choosing

the parallel programming paradigms. The parallel programming paradigm is divided into

two types: shared memory and distributed memory, as shown in figure 4.5.

FIGURE 4.5: Main parallel programming languages, programming environ-
ments and middlewares.

43

The shared memory paradigm allows all processes to share the same data. Hence, the

programmer is responsible to handle data access among processes (synchronization condi-

tions) to avoid data corruption or deadlock by using mutex or semaphores. Following are

alternatives to program such architectures:

• Multithreading: Thread is the smallest sequence of instructions inside the process.

Multiple threads can be executed in parallel by a scheduler and they share the same

memory space of the process.

• Compiler directives: Compiler directives (pragma) specifies how a compiler should pro-

cess its input. OpenMP (open multiprocessing) is a set of compiler directives that

supports multi-platform shared memory multiprocessing programming. OpenMP is

portable and scalable, it supports multiple programming languages to develop a par-

allel system such: C, C++, and Fortran. In addition, its support different operating

systems such Linux and Microsoft Windows [53].

By using OpenMP directives, developers can easily transform sequential algorithms

into parallel ones. Furthermore, OpenMP can be controlled by system environments to

change its behavior (e.g. change number of threads).

Distributed memory has the following three paradigms:

• Message passing: Is the most common paradigm of parallel architectures, where pro-

cesses or threads exchange information using synchronous or asynchronous messages.

Network socket is considered the most famous environment for message passing paradigm.

• Remote procedure call (RPC): Is a protocol that allows program to request function

located in another computer over the network regardless of understanding the network

details

• Object-oriented models: Its an object oriented extension of the RPC. Java RMI (remote

method invocation) is one example of this paradigm.

44

4.3 Performance Evaluation

The performance in the parallel algorithms is measured by the execution time exactly as in

the sequential algorithms, but in addition, the number of processors and the characteristics

of parallel architecture are taken into consideration. The scalability of parallel algorithms

means getting performance is proportional to the number of processors. To evaluate the

scalability of parallel algorithms both speedup and efficiency are utilized [54].

The speedup SN is defined as the time T1 it takes to complete a program with one

processor divided by the time TN it takes to complete the same program with N processors,

as shown in equation 4.1. Wall clock time can be used to calculate the whole program time

including I/O operations.

SN =
T 1
TN

(4.1)

Average speedup is used in case of stochastic metaheuristics that depends on solution

quality to stop execution, as shown in equation 4.2.

SN =
Average(T 1)

Average(TN)
(4.2)

The efficiency EN using N processors is defined as the speedup SN divided by the number

of processors N, as shown in equation 4.3. Efficiency indicates how N processors are utilized

while the program is running.

EN =
SN
N

(4.3)

Finally, it is important to use the same random seed -which is used to generate random

numbers- in order to have a deterministic random generation cross different runs to calculate

the performance.

45

4.4 Parallel Design Of Metaheuristics

This section presents the three main levels used in designing a parallel metaheuristics. The

levels are algorithmic level, iteration level and solution level. As shown in figure 4.6.

FIGURE 4.6: Combination of the three parallel hierarchical models of meta-
heuristics [46].

4.4.1 Algorithmic-Level Parallel Model

At this level, independent or collaborative metaheuristics are used. In case of independent,

research is equivalent to the sequential search in terms of quality of the result, but less in

terms of time. In the case of a collaborative model, the metaheuristics affect each other,

sharing together to improve the result [46].

46

Independent Algorithmic-Level Parallel Model

In this type, a group of independent metaheuristics coexist in parallel to solve a specific

problem. Each single metaheuristic may differ than others in solution initialization, parameter

settings, fitness function, stopping criteria, and others [46]. This type is simple and easy to

implement. It consists of a master and a number of workers. A master provides the workers

with the necessary parameters to start the process of finding the best solution, as shown in

figure 4.7

FIGURE 4.7: The parallel independent algorithmic-level model for meta-
heuristics [46].

Cooperative Algorithmic-Level Parallel Model

In this parallel type, metaheuristics (homogeneous, or heterogeneous) are cooperate together

to get the best solution. To design such model, different considerations must be taken first,

figure 4.8 illustrates the major questions in designing an algorithmic-level model for meta-

heuristics.

Regarding to choose the appropriate time to exchange messages between metaheuristic

(when?), there are several ways to do this: periodic (after a fixed number of iterations),

Probabilistic, and adaptive (run-time based on a search characteristics). Different topologies

are used to exchange information between metaheuristic (where?) such: ring, 2D mesh,

hypercube of order 3, and complete graph. As to the content of exchanging messages between

47

FIGURE 4.8: Design questions involved by the parallel algorithmic-level
model for metaheuristics [46].

metaheuristics (what?). The content may includes elite solution (local best) or search memory

(any element found in search memory). Finally, the integration policy (how?) deals with

received information, where local variables are replaced by global best [46].

4.4.2 Iteration-Level Parallel Model

It is well known that the metaheuristic, both types S-metaheuristics and P-metaheuristics,

require enormous computational resources through the large number of iteration cycles to

reach near optimal solutions. To speed up metaheuristic algorithms, iteration-level parallel

model is deployed. In this model, the problems are independent, so its easy to split the

iterations into a number of parallel cycles to work together [46].

On one hand, S-Metaheuristics can take advantage of the parallel model in both generation

and evaluation of the neighborhood to speed up the searching process. In this model, the

iteration is divided into several segments (partitions) each one runs on different processor.

In general, the number of segments is equal, and the maximum number of segments is equal

to number of solutions [46].

To select the improved neighbor from parallel partitions, two strategies are utilized:

• Best improving neighbor: a synchronous search (wait all partitions till finish), where

the parallel partitions are searched to find the best neighbor.

• First improving neighbor: asynchronous search (no need to explore all partitions), where

the exploration stops once the improved neighbor is found.

48

On other hand, P-metaheuristics can be optimized in term of execution time by using

iteration level mode of parallel, since P-metaheuristics has independant set of solution, which

make it easy to split the iteration over a number of partitions. For example, Grey Wolf

Optimizer (GWO) consists of population of agents (solutions), each solution can run on

processor. To select the best solution both synchronous and asynchronous are utilized [46].

4.4.3 Solution-Level Parallel Model

Evaluating the fitness (objective) function in metaheuristicsn is the frequently used and the

most costly operation. Solution-level parallel model, is a problem-dependent aims to speed

up the search and reduce the time needed for the evaluation by applying the parallelization

of the evaluation of a single solution [46].

Following are three models used in solution-level parallel:

• Functional decomposition: Is a synchronous model, where the evaluation function (fit-

ness) is divided into several sub functions that executed in parallel. The results of the

sub functions are then collected as a single result (reduction operation).

• Data partitioning: In some problems, data are huge. Therefore fitness function can not

deal with such data due to memory limitation. Instead, a distributed databases is used

to store the data. So, similar instances of fitness functions are performed on different

data partitions.

• Hybrid model: It is a model that combines both functional decomposition and data

partitioning.

4.4.4 Main Properties of Parallel Metaheuristics

Parallel metaheuristic is measured by maximum number of parallel processes regardless the

parallel architecture. In addition to the number of processors, there are a number of im-

portant issues that affect the parallel metaheuristics, for example: asynchronous communi-

cations, processors integrate different parallel elements integration (e.g. GPU, DMA, FPU),

49

input/output (I/O) operations, and scheduling strategies. Following are scheduling strategies

[46]:

• Static scheduling: in this type, the number of parallel tasks (jobs) and data location

is defined during the compile time. This type is more suitable with homogeneous and

non-shared data heterogeneous metaheuristics.

• Dynamic scheduling: it is similar to the static scheduling except that the data deter-

mines at run time. Thus, load balancing is essential for shared architectures.

• Adaptive scheduling: in this type tasks are created automatically during the node

hibernation, and tasks are killed when nodes becomes non idle. Finally, adaptive load

balancing must be handled.

50

Chapter 5

The Implementation of Parallel BGWO

Umayaparvathi and Iyakutti [56] proposed a five-phase model to construct a customer churn

prediction, as shown in figure 5.1. The process of building the model starts with data gather-

ing from telecom companies. The second phase, is data preparation, where the obtained data

are often incomplete or contain irrelevant items. Then derived variables, where data expert

extract the attributes from the data. In customer churn, derived variables are not important,

with an assumption that data are arranged in database with columns that represent the at-

tribute name, and rows that represent the customers. Extracting variables is the next phase,

which determine the minimal set of variable using several techniques (e.g. Feature Selection

algorithms) to build accurate model with reasonable time. Finally model construction which

used to guess the customer churn.

FIGURE 5.1: Data modelling steps [56].

51

The following sections deal with data acquisition 5.1 and processing 5.2 as an important

steps before building a correct churn model [55], as well as presenting the proposed approach

5.3.

5.1 Data Acquisition

Because its difficult to obtain real customer dataset from local telecommunications compa-

nies, due to data privacy (confidentiality) or competitive considerations, we used Kaggle
1 dataset repository instead. Kaggle is a cloud-based workbench for data science, owned

by Google. The dataset includes 7043 customers and 20 customer properties, in addition

a labeled propriety (churn/ not churn). Table 5.1 represents the dataset properties, which

includes information about:

• Churn: Customers status who left or still in company within the last month.

• Services requested by the customer: phone, multiple lines, tech support, online security,

streaming TV and movies, device protection, internet, and online backup.

• Customers account information: contract, payment method, paperless billing, monthly

charges, total charges and how long the customer spent in the company.

• Customers demographic information: gender, and if they have dependents and/or part-

ners.
1https://www.kaggle.com

52

Field name Field type Field values Description

customerID string unique values

gender string Male, Female Whether the customer is a male or a female

SeniorCitizen numeric 0, 1 Whether the customer is a senior citizen or not

Partner string No, Yes Whether the customer has a partner or not

Dependents string No, Yes Whether the customer has dependents or not

tenure numeric 0 to 72
Number of months the customer
has stayed with the company

PhoneService string No, Yes
Whether the customer has a phone
service or not

MultipleLines string No, Yes Whether the customer has multiple lines or not

InternetService string DSL, Fiber optic, No Customers internet service provider

OnlineSecurity string
Yes, No,
No internet service Whether the customer has online security or not

OnlineBackup string
Yes, No,
No internet service Whether the customer has online backup or not

DeviceProtection string
Yes, No,
No internet service

Whether the customer has
device protection or not

TechSupport string
Yes, No,
No internet service Whether the customer has tech support or not

StreamingTV string
Yes, No,
No internet service Whether the customer has streaming TV or not

StreamingMovies string
Yes, No,
No internet service

Whether the customer has
streaming movies or not

Contract string
Month-to-month,
One year, Two year The contract term of the customer

PaperlessBilling string No, Yes
Whether the customer has
paperless billing or not

PaymentMethod string

Electronic check,
Mailed check,
Bank transfer,
Credit card The customers payment method

MonthlyCharges numeric 18.3 to 119 The amount charged to the customer monthly

TotalCharges numeric 18.8 to 8.68k The total amount charged to the customer

churn string No, Yes Whether the customer churned or not

TABLE 5.1: Churn in Telecom’s dataset from Kaggle 2.

2https://www.kaggle.com/blastchar/telco-customer-churn

53

5.2 Preprocessing

Customer dataset is sometimes incomplete or includes irrelevant data (noisy), and such data

affects the accuracy of the intended customer model. The database must contain fields that

are directly related to call charges, call usage (e.g. total day calls) [55]. In this section, we

will present the data cleaning process that used in the customer dataset.

5.2.1 Data Cleaning

In this step, both features, and instances are cleaned (eliminated) from the dataset, in order

to build accurate predictive model.

Following are some customer fields that should be neglected when building the predictive

model, since they do not have predictive value:

• Unique values, including unlock codes, customer addresses. In this regards, we removed

’customerID’ column from the dataset.

• Common values such geographical.

• Fields with only one value.

• Fields with repetitive ’null’ value. These fields are exist in prepaid customers, where

the customer is not obliged to give personal information such as age, sex, etc. In our

case ’TotalCharges’ have empty value, so we removed the correlated row.

Furthermore, the customer instance in the dataset will be eliminated if he/she have zero

volumes (no transaction) within specific time interval (depends on telecom company, but

usially 2-4 months), or the customer have a recordings for one month, and other months were

missing.

5.3 The Proposed Approach

In this section, we will present multiple offspring sampling technique (5.3.1) and its inter-

action with the proposed Grey Wolf Optimizer (GWO) (5.3.2 and 5.3.3). We selected the

54

Grey Wolf Optimizer (GWO) algorithm as the most cited paper with more than 2000 ci-

tation indexes based on Science Direct website 3, in addition to the ease of converting the

algorithm into parallel form using OpenMP framework. Finally, The GWO algorithm relies

on the hierarchical nature to search for a solution, represented by wolves, which provides an

opportunity to obtain a more accurate results.

Multiple Offspring Sampling (MOS) is a technique that used different update functions to

advance Grey Wolf position to better location. We developed two parallel algorithms based on

the original Gray Wolf optimizer. The first algorithm runs an independent (GWO) instances

(5.3.2), and selects the best solution at the end of the algorithm. The second algorithm

is an improvement on the first algorithm, where the cooperation is applied between the

GWO instances (5.3.3). In this regards, the master thread stops all (GWO) instances after a

certain iterations to collect alpha values from workers, and then populate the best alpha over

all instances. It is worth mentioning that, the master thread will make mutation on some

instances to make sure not all instances go toward the same location in the search space.

5.3.1 Multiple Offspring Sampling (MOS)

Experience has shown that evolutionary algorithms (e.g. genetic algorithm) can solve many

problems. But this does not mean that they can solve all the problems. For example, chang-

ing dataset or parameters may affect the algorithm’s success. In this regard, The No Free

Lunch Theorem (NFL) means ”any two algorithms are equivalent when their performance is

averaged across all possible problems” [59]. This theory leads us to conclude that a hybrid

of several algorithms or several parameters can guarantee the solution in different situations,

this principle is called (MOS).

Multiple offspring Sampling (MOS) is a technique to create new solutions (individuals)

using certain evolutionary algorithm, encoding, operators (if required), and parameters [61].

Following are MOS taxonomies based on the above definition:

• Algorithm-based MOS: create new individuals by using different algorithms (e.g. GAs,

EDAs).
3https://www.sciencedirect.com/science/article/abs/pii/S0965997813001853

55

• Coding-based MOS: solution representation can be done using different codings (geno-

types).

• Operator-based MOS: this type is usually used with genetic algorithms, where multiple

operators are applied to the solution simultaneously.

• Parameter-based MOS: different evolutionary parameters are used, such as crossover,

selection, mutation, etc.

Table 5.2 presents the update functions used in this thesis.

Id Function Name Equation
1 Linear [45] Fx = 2− current_itr 2

total_itr

2 Inertia strategy [96] Fx = 0.9− (0.9− 0.4)(current_itrtotal_itr)
1
π2

3 Nonlinear improved [96] Fx = 0.3× 1.0002−current_itr

4
Decreasing inertia
weight [96] Fx = (2

current_itr)
0.3

5
Natural exponent
ineria weight [95] Fx = 0.4 + (0.9− 0.4)× e−10× current_itr

total_itr

6
Oscillating inertia
weight [94] Fx =


1.2
2 + 0.6

2 ×
cos(2πcurrent_itr 34

3total_itr) current_itr < 3 total_itr
4

0.3 elsewhere

7
PSO with Sugeno
inertia weight [93] Fx = 1− current_itr

total_itr ÷ 1 + 2 current_itr
total_itr

8
Logarithm decreasing
inertia weight [92] Fx = 0.9 + 1.3× log10(1 + 10 current_itr

total_itr)

TABLE 5.2: Update functions used in parallel MOS BGWO.

Combining several algorithms together (hybridization) leads to the following cases [60]:

• Collaborative algorithms: improves the performance of the best algorithm when it is

used individually.

• Competitive selection: select the best algorithm in performance.

5.3.2 Independent parallel BGWO

MOS are used to generate new individuals, which leads to an improvement in the solution.

We have taken advantage of the MOS principles but with a slight modification, where we pass

56

a different update functions (table 5.2) to different instances of BGWO, in order to move the

solution (exploitation or exploration). In other words, All BGWO instances are running in

parallel, where each instance have different update function. At the end of BGWO iteration,

we select the best solution (the highest accuracy) generated from the BGWO instances.

Figure 5.2 illustrates the flow diagram for this algorithm. Finally, we named the proposed

approach as piMBGWO (parallel-independent-MOS-BGWO).

FIGURE 5.2: Parallel independent MOS BGWO flowchart.

5.3.3 Cooperative parallel BGWO

This algorithm is an improvement to the previous algorithm. Where a master thread runs the

independent BGWO algorithms a specified number of iterations and then collects an alpha

value. The master thread stops the independent algorithms every 25% (K) percentage of

57

the total number of iterations. For example, if we assume that the number of iterations is

100, the master thread will stop the independent BGWO 4 times to collect alpha values. We

performed a number of experiments to calculate the value of (K) on the UCI datasets, and

concluded that 25% is the best value. Table 5.3 shows cooperative parallel BGWO settings.

As with the first approach, each independent instance of BGWO algorithm running an update

function that differ from its counterparts as shown in figure 5.3.

58

FIGURE 5.3: cooperative parallel BGWO flowchart.

After collecting alpha values, the master thread sort alpha values by descending accuracy,

then selects the heights value (the first item). The master thread then distributes the highest

59

value to all BGWO instances. It is worth mentioning that the phase of collecting alpha

values consists of: BGWO current accuracy, alpha score and alpha position (current solution).

Finally, the master thread apply mutation on BGWO instances to prevent them go towards

same location in the search space. Algorithm 6 presents the mutation function followed in

this approach. Where the basic idea in this function is flipping alpha position by applying

(xor) operator randomly based on mutation rate. Finally, we named the proposed approach

as pcMBGWO (parallel-Cooperative-MOS-BGWO).

Parameter Value

K percentage 0.25

Mutation rate 0.02 4

Mutation percentage 0.3 4

TABLE 5.3: Cooperative parallel BGWO settings.

Algorithm 6 Cooperative parallel BGWO mutation function

1: procedure MUTATION(alpha_pos, mutation_rate)
2: nmu = ceil(mutation_rate * size_of_alpha_pos)
3: result = alpha_pos
4: i = 0
5: while i < nmu do
6: j = random_number_between(0, size_of_alpha_pos)
7: result[j] = alpha_pos[j] xor 1
8: i = i + 1
9: return result

10: end procedure

4https://fr.mathworks.com/matlabcentral/fileexchange/52856-binary-and-real-coded-genetic-algorithms

60

Chapter 6

Experiments

In this chapter, we will discuss the tools and libraries used in the algorithm development

process as described in section experiment setup (6.1). In addition, we will explain the

benchmark datasets used to evaluate the proposed algorithms as shown in section benchmark

datasets (6.2). Finally, we illustrate the collected results and provide a discussion as described

in section results and discussion (6.3).

6.1 Experiment Setup

The proposed algorithms were developed under Debian 64bit operating system (version 8.1.0),

with tool-chains (development tools) as shown in table 6.1.

61

Tool name Version Description

g++ 5.4.0 C++ compiler (standard 0x11)

ld 2.26.1 GNU linker

make 4.1 GNU make (builder)

Shark 3.1.0 Machine learning library

OpenMP 2.0 Shared memory multi-threading library

Python 2.7
Python scripting language to calculate
Wilcoxon (p_value)

Scipy 1.2.2
Open-source Python library used for
scientific computing (Wilcoxon)

IBM SPSS 22 Statistical analysis software (Friedman test)

TABLE 6.1: Tool-chains used in the development.

However, we used Intel(R) processor i7-4770 to have good infrastructure for paralleliza-

tion, and total memory of 16 GB. Table 6.2 presents the used processor specifications.

Property name Property value

Vendor Intel(R) CoreTM

Model i7-4770

Frequency 3.40 GHz

CPU cores 4

Siblings (Threads) 8

Cache 8 MB

Instructions width 64 bits

TABLE 6.2: CPU specifications used in development.

Finally, table 6.3 shows the parameters tuning used in the proposed algorithm. It is worth

mentioning that, we used four threads in the proposed algorithm to match the CPU threads

that used in the experiment as shown in table 6.2.

62

Parameter Value

KNN threads 4

BGWO threads 4

Population size 10 [45]

Iterations 100 [45]

Training percent 80% [45]

Testing percent 20% [45]

Number of run (average) 20 [45]

α in pBGWO [2,0] decreasing, equations 5.2

KNN classifier K=5 [39]

KNN distance metric Euclidean [64]

TABLE 6.3: Parameters tuning for the proposed algorithm.

6.2 Benchmark Datasets

We evaluated the proposed algorithms on 18 well known datasets from UCI repository [62],

as shown in table 6.4.

63

Dataset # Features # Instances # Classes Domain

Breastcancer 9 699 2 Biology

BreastEW 30 569 2 Biology

CongressEW 16 435 2 Politics

Exactly 13 1000 2 Biology

Exactly2 13 1000 2 Biology

HeartEW 13 270 2 Biology

IonosphereEW 34 351 2 Electromagnetic

KrvskpEW 36 3196 2 Game

Lymphography 18 148 2 Biology

M-of-n 13 1000 2 Biology

PenglungEW 325 73 2 Biology

SonarEW 60 208 2 Biology

SpectEW 22 267 2 Biology

Tic-tac-toe 9 958 2 Game

Vote 16 300 2 Politics

WaveformEW 40 5000 3 Physics

WineEW 13 178 3 Chemistry

Zoo 16 101 6 Artificial

TABLE 6.4: List of used datasets in the experiments.

6.3 Results and Discussion

We conducted a set of experiments to measure the effectiveness of the proposed algorithms

(pMBGWO), (piMBGWO) and (pcMBGWO). The proposed algorithms consist of four in-

stances running in parallel by OpenMp framework, and each instance run its own update

function. Table 6.5 illustrates the selected update functions based on their ranks. The four

update functions are: natural exponent ineria weight (5), inertia strategy (2), nonlinear

64

improved (3) and oscillating inertia weight (6) respectively as show in table 5.2.

The selected update functions are derived by the following procedure:

1. Apply all update functions on each dataset using (piMBGWO) algorithm. The result

will be a huge matrix with all possible combinations.

2. Sorting each dataset by fitness value in ascending order.

3. Creating a table the includes the update function id ranks as appeared in each dataset.

For instance, the update function number (7) has a rank (1) in Breastcancer dataset,

and update function number (2) has a rank (4) in the same dataset, etc.

4. Calculate the average rank of each update function.

5. Sorting the average rank in ascending order.

6. Collect the first four update functions, since we are using four threads in our experiment.

65

Dataset Function id / Rank

5 2 3 6 8 7 4 1

Breastcancer 2 4 8 3 6 1 5 7

BreastEW 2 5 6 1 4 3 8 7

Exactly 5 1 3 4 2 6 8 7

Exactly2 3 4 5 2 8 1 6 7

HeartEW 2 5 1 3 7 8 4 6

Lymphography 1 3 6 4 8 7 2 5

M-of-n 2 5 3 1 4 7 8 6

PenglungEW 4 5 1 6 2 3 7 8

SonarEW 2 1 3 6 7 4 5 8

SpectEW 3 8 6 5 2 4 1 7

CongressEW 2 3 1 7 4 5 6 8

IonosphereEW 4 6 3 2 5 1 8 7

KrvskpEW 6 1 2 5 3 4 8 7

Tic-tac-toe 5 1 8 6 7 3 2 4

Vote 7 4 3 2 1 6 8 5

WaveformEW 4 6 1 3 2 5 8 7

WineEW 2 3 7 4 1 8 6 5

zoo 2 5 3 7 4 6 8 1

Average 3.222 3.889 3.889 3.944 4.278 4.556 6.000 6.222

TABLE 6.5: The update functions rank (ascending order by average column).

We compared the original grey wolf algorithm (BGWO) with (pBGWO), (piMBGWO)

and (pcMBGWO) in terms of fitness, accuracy, number of features and execution time (in

seconds); as showed in tables [6.6, 6.7, 6.8 and 6.9]. In addition, we plotted the tables as

graphs as shown in figure [6.1].

66

Dataset BGWO pBGWO piMBGWO pcMBGWO

Breastcancer 0.023 0.024 0.023 0.021

BreastEW 0.031 0.026 0.024 0.021

CongressEW 0.037 0.023 0.024 0.021

Exactly 0.208 0.102 0.080 0.079

Exactly2 0.210 0.206 0.207 0.203

HeartEW 0.092 0.075 0.073 0.070

Iono-

sphereEW

0.069 0.052 0.049 0.039

KrvskpEW 0.032 0.028 0.024 0.020

Lymphogra-

phy

0.085 0.078 0.103 0.098

M-of-n 0.063 0.034 0.020 0.018

penglungEW 0.214 0.190 0.186 0.143

SonarEW 0.022 0.025 0.019 0.010

SpectEW 0.125 0.103 0.105 0.093

Tic-tac-toe 0.098 0.101 0.098 0.096

Vote 0.037 0.024 0.025 0.023

WaveformEW 0.199 0.190 0.186 0.178

WineEW 0.004 0.005 0.005 0.004

Zoo 0.003 0.004 0.003 0.002

TABLE 6.6: Comparison between BGWO, pBGWO, piMBGWO and pcM-
BGWO in terms of fitness average.

67

Dataset BGWO pBGWO piMBGWO pcMBGWO

Breastcancer 0.976 0.979 0.981 0.980

BreastEW 0.972 0.980 0.981 0.982

CongressEW 0.957 0.978 0.979 0.989

Exactly 0.752 0.880 0.900 0.986

Exactly2 0.768 0.792 0.791 0.793

HeartEW 0.894 0.926 0.926 0.930

Iono-

sphereEW

0.936 0.953 0.954 0.964

KrvskpEW 0.974 0.979 0.982 0.987

Lymphogra-

phy

0.913 0.922 0.902 0.900

M-of-n 0.921 0.963 0.980 0.997

penglungEW 0.790 0.810 0.813 0.867

SonarEW 0.983 0.980 0.986 0.994

SpectEW 0.872 0.899 0.896 0.910

Tic-tac-toe 0.841 0.897 0.904 0.901

Vote 0.962 0.978 0.977 0.976

WaveformEW 0.803 0.811 0.816 0.825

WineEW 0.999 1.000 1.000 1.000

Zoo 1.000 1.000 1.000 0.995

TABLE 6.7: Comparison between BGWO, pBGWO, piMBGWO and pcM-
BGWO in terms of accuracy average.

68

Dataset BGWO pBGWO piMBGWO pcMBGWO

Breastcancer 5.15 4.6 4.6 3.7

BreastEW 17.45 17 15.4 12.95

CongressEW 7.8 7.1 5.95 5.2

Exactly 9.7 7.9 7.45 6.85

Exactly2 6.75 6 5.5 4.9

HeartEW 8.6 7.75 7.85 6.8

IonosphereEW 17.9 19.15 17.35 12.9

KrvskpEW 28.1 27.6 24.75 22.6

Lymphography 7.9 10.05 9.85 6.8

M-of-n 9.1 8.15 7.2 6.15

penglungEW 187.6 183.85 161.25 127.25

SonarEW 31.2 36.15 29.9 23

SpectEW 14.75 13.25 12 10.35

Tic-tac-toe 9 8.8 9 7.85

Vote 7.9 5.95 5.95 4.25

WaveformEW 30.55 29.2 26.5 25.5

WineEW 5.1 7 6.3 4.8

Zoo 5 7 5.05 3.85

TABLE 6.8: Comparison between BGWO, pBGWO, piMBGWO and pcM-
BGWO in terms of number of features average.

69

Dataset BGWO pBGWO piMBGWO pcMBGWO

Breastcancer 0.455 0.543 0.535 8.278

BreastEW 0.576 0.660 0.598 6.480

CongressEW 0.298 0.413 0.392 6.009

Exactly 1.009 1.131 1.092 18.945

Exactly2 0.908 1.032 0.979 22.637

HeartEW 0.136 0.187 0.181 2.335

IonosphereEW 0.295 0.414 0.397 4.347

KrvskpEW 16.123 20.274 16.698 170.443

Lymphography 0.059 0.112 0.113 1.210

M-of-n 1.000 1.142 1.096 20.552

penglungEW 0.210 1.704 1.755 2.229

SonarEW 0.199 0.402 0.368 2.355

SpectEW 0.179 0.237 0.225 2.841

Tic-tac-toe 0.842 1.173 1.117 18.111

Vote 0.156 0.307 0.261 3.408

WaveformEW 37.650 49.043 44.964 379.654

WineEW 0.074 0.115 0.114 1.522

Zoo 0.039 0.094 0.093 0.844

TABLE 6.9: Comparison between BGWO, pBGWO, piMBGWO and pcM-
BGWO in terms time (seconds).

70

(A) Fitness

(B) Accuracy

(C) Features

(D) Time (seconds)

FIGURE 6.1: Graph comparison between BGWO, pBGWO, piMBGWO and
pcMBGWO.

71

By reviewing the results above, we observe the superiority of the proposed models: co-

operative (pcMBGWO) and independent (piMBGWO) over the original algorithm (BGWO)

in terms of execution fitness average, accuracy average and number of features average.

Algorithms can be arranged in terms of fitness average as follows: pcMBGWO > piM-

BGWO > pBGWO > BGWO. Where (pcMBGWO) outperforms the other algorithms in 17

out of 18 datasets. Based on this arrangement, the third research question (1.3) RQ 3 was

answered. The (pcMBGWO) also outperforms other algorithms regarding accuracy average

by 13 out of 18 datasets.

Moreover, the (pcMBGWO) outperforms other algorithms regarding number of features

average cross all datasets. In this regards, we obtained a results with high accuracy with

minimum number of features, and so we answered the research question (1.3) RQ 2.

On the other hand, the results showed that the (pcMBGWO) algorithm takes more time

compared to other algorithms due to the time spent in collecting the information from the

workers, calculating the best alpha value from workers, applying mutation and distribution

of the best solution to all workers. It is worth mentioning that the parallel mechanism

using OpenMp (pcMBGWO) has achieved a superior time in both algorithms: pBGWO and

piMBGWO. For example the execution time in the Breastcancer using the original algorithm

is 0.455 seconds, and if the algorithm is executed four times in succession, the time becomes

1.82 second. However, using a OpenMp mechanism, the time of pBGWO and piMBGWO is

0.543 seconds, 0.535 seconds respectively.

In addition, the fitness convergence curve has been plotted for all algorithms over the 18

datasets as shown in figure [6.2]. The graph show the superiority of the proposed algorithm

(pcMBGOW). As mentioned earlier in this thesis (subsection 2), GreyWolf Optimizer (GWO)

counters bias towards the exploitation, so it suffers from stacking at the local optima. As

shown in the Yellow Line, the proposed algorithm has overcome the problem of local optima

by conducting evaluation every 25% of the iterations as mentioned in (section 5.3.3).

72

(A) Breastcancer (B) BreastEW (C) CongressEW

(D) Exactly (E) Exactly2 (F) HeartEW

(G) IonosphereEW (H) KrvskpEW (I) Lymphography

(J) M-of-n (K) PenglungEWpng (L) SonarEW

(M) SpectEW (N) Tic-tac-toe (O) Vote

(P) WaveformEW (Q) WineEW (R) Zoo

FIGURE 6.2: Fitness convergence curve for benchmark datasets.

73

Statistically speaking, we defined the null hypothesis H0 as follows: There are no differ-

ences between the proposed approaches and the original approach; α = 5%. In this regard.

Both F-test, and Wilcoxon test has been conducted on collected results to validate the pro-

posed algorithms.

We applied the Friedman test (F-test) to determine the rank of the algorithms in terms

of fitness (table 6.6), accuracy (table 6.7), number of features (table 6.8) and execution time

(table 6.9). Friedman test is a non-parametric statistical test used to detect differences in

treatments across multiple test attempts. Tables (6.10, 6.11, 6.12 and 6.13) represent the

rank of algorithms according to the F-test. The F-test results showed that the proposed

algorithm (pcMBGWO) surpassed (rank 1) the other algorithms BGWO, pMBGWO and

piBGWO in term of fitness, accuracy and number of features. But the proposed algorithm

comes last (rank 4) in term of execution time due to threading overhead other factors as

mentioned above.

Algorithm BGWO pMBGWO piBGWO pcMBGWO

Mean rank (F_test) 3.44 2.92 2.50 1.14

Overall rank 4 3 2 1

TABLE 6.10: F-test ranking for BGWO, pBGWO, piMBGWO and pcMBGWO
in term of fitness.

Algorithm BGWO pMBGWO piBGWO pcMBGWO

Mean rank (F_test) 3.72 2.58 2.08 1.61

Overall rank 4 3 2 1

TABLE 6.11: F-test ranking for BGWO, pBGWO, piMBGWO and pcMBGWO
in term of accuracy.

Algorithm BGWO pMBGWO piBGWO pcMBGWO

Mean rank (F_test) 3.53 3.11 2.36 1.00

Overall rank 4 3 2 1

TABLE 6.12: F-test ranking for BGWO, pBGWO, piMBGWO and pcMBGWO
in term of number of features.

74

Algorithm BGWO pMBGWO piBGWO pcMBGWO

Mean rank (F_test) 1.00 2.89 2.11 4.00

Overall rank 1 3 2 4

TABLE 6.13: F-test ranking for BGWO, pBGWO, piMBGWO and pcMBGWO
in term of time (second).

In order to reject the null hypothesis and support our approaches, we have to calculated

the probability value (P-value). So the proposed approaches pBGWO, piMBGWO and pcM-

BGWO will be valid if p_value < α. To calculate the (P-value) we used the Wilcoxon test

because of the nature of the random and binary data (not having data that is normally dis-

tributed). Tables 6.14, 6.15 and 6.16 compare pcMBGWO versus BGWO, pMBGWO and

piBGWO in term of accuracy, number of features and fitness using Wilcoxon test (P-value).

Its worth mentioning that, F-test has been calculated using IBM SPSS, and Wilcoxon test

(P-value) has been calculated using python/Scipy library.

75

Dataset pcMBGWO versus

BGWO pMBGWO piBGWO

Breastcancer 4.38E-02 1.07E-01 6.17E-01

BreastEW 7.00E-04 5.78E-02 2.48E-01

CongressEW 1.20E-04 1.24E-02 2.17E-03

Exactly 8.66E-05 2.10E-04 1.38E-03

Exactly2 2.99E-04 7.15E-01 3.02E-01

HeartEW 1.04E-04 6.50E-01 5.86E-01

IonosphereEW 2.34E-04 2.63E-03 4.73E-03

KrvskpEW 1.40E-04 8.56E-04 2.51E-03

Lymphography 3.41E-01 2.36E-02 7.98E-01

M-of-n 8.76E-05 4.14E-04 6.44E-03

PenglungEW 1.20E-03 6.19E-03 1.78E-02

SonarEW 6.66E-03 1.34E-03 3.48E-02

SpectEW 1.13E-04 3.58E-02 1.52E-02

Tic-tac-toe 1.18E-03 6.80E-01 5.81E-01

Vote 1.76E-03 4.39E-01 7.63E-01

WaveformEW 1.20E-04 8.80E-05 3.83E-04

WineEW 3.17E-01 NaN NaN

zoo 3.17E-01 3.17E-01 3.17E-01

TABLE 6.14: Wilcoxon test (P-value) for pcMBGWO versus BGWO, pBGWO,
piMBGWO in term of accuracy.

76

Dataset pcMBGWO versus

BGWO pMBGWO piBGWO

Breastcancer 2.18E-01 4.05E-01 5.31E-01

BreastEW 5.88E-04 2.75E-04 9.19E-02

CongressEW 1.30E-02 2.18E-01 3.56E-01

Exactly 7.88E-05 1.43E-04 1.57E-03

Exactly2 1.46E-01 5.41E-01 9.38E-01

HeartEW 2.96E-03 3.03E-01 3.78E-01

IonosphereEW 3.70E-04 1.25E-03 3.89E-03

KrvskpEW 1.25E-03 3.25E-03 2.91E-01

Lymphography 1.68E-01 4.75E-03 7.16E-02

M-of-n 2.79E-04 1.26E-03 3.71E-02

PenglungEW 8.82E-05 8.82E-05 1.62E-04

SonarEW 4.09E-04 8.60E-05 7.76E-03

SpectEW 1.22E-04 2.46E-04 1.36E-02

Tic-tac-toe NaN 3.17E-01 NaN

Vote 4.41E-03 1.08E-01 4.19E-01

WaveformEW 1.06E-03 2.57E-02 6.17E-01

WineEW 7.24E-03 4.89E-02 6.70E-01

zoo 7.26E-01 6.85E-04 8.75E-01

TABLE 6.15: Wilcoxon test (P-value) for pcMBGWO versus BGWO, pBGWO,
piMBGWO in term of number if features.

77

Dataset pcMBGWO versus

BGWO pMBGWO piBGWO

Breastcancer 3.51E-02 1.57E-02 1.76E-01

BreastEW 8.92E-04 5.11E-03 2.42E-02

CongressEW 2.89E-03 5.57E-01 1.13E-01

Exactly 1.82E-04 3.51E-01 8.52E-01

Exactly2 5.73E-03 1.79E-01 1.79E-01

HeartEW 1.62E-04 1.42E-01 4.07E-01

IonosphereEW 2.92E-04 4.04E-03 6.93E-03

KrvskpEW 1.40E-04 2.54E-04 2.34E-03

Lymphography 4.94E-01 4.46E-01 2.27E-01

M-of-n 1.16E-03 2.16E-02 6.79E-01

PenglungEW 1.16E-03 2.49E-03 3.18E-03

SonarEW 8.37E-04 2.92E-04 2.82E-03

SpectEW 8.67E-05 6.22E-04 4.05E-03

Tic-tac-toe 7.46E-04 7.82E-04 7.46E-04

Vote 1.45E-03 2.55E-01 8.89E-02

WaveformEW 1.03E-04 8.92E-04 2.65E-03

WineEW 1.33E-02 2.85E-04 8.39E-04

zoo 1.56E-03 1.48E-03 1.85E-02

TABLE 6.16: Wilcoxon test (P-value) for pcMBGWO versus BGWO, pBGWO,
piMBGWO in term of fitness.

An overview of P-values as shown in the tables (6.14, 6.15 and 6.16) look like less than α,

which means that there are a meaningful differences, so the null hypothesis can be rejected

and we confirmed the proposed approaches to be statistically significant. Hence, we claim

that, the parallel mechanism using OpenMp over MOS technique gives better results than

the original algorithm in both independent and cooperative models. It is worth mentioning

that the ”NaN” value appeared in some of previous tables, and this value means that some

78

data samples (algorithms) are equal or has the same average, and sometimes means (division

by zero).

After we confirmed that the proposed algorithm (pcMBGWO) gives the best results, we

compared it against the following algorithms in terms of accurecy over the UCI dataset (6.4):

Whale Optimization Algorithm (WOA), Genetic Algorithm (GA), Particle Swarm Algorithm,

and Dragonfly Algorithm as shown in table [6.17].

Dataset pcMBGWO WOA GA PSO DF

Breastcancer 0.980 0.957 0.968 0.967 0.963

BreastEW 0.982 0.955 0.939 0.933 0.961

CongressEW 0.989 0.929 0.932 0.928 0.967

Exactly 0.986 0.757 0.674 0.688 0.98

Exactly2 0.793 0.698 0.746 0.73 0.745

HeartEW 0.930 0.763 0.78 0.787 0.83

IonosphereEW 0.964 0.89 0.814 0.819 0.93

KrvskpEW 0.987 0.915 0.92 0.941 0.953

Lymphography 0.900 0.785 0.696 0.744 0.877

M-of-n 0.997 0.854 0.861 0.921 0.992

PenglungEW 0.867 0.729 0.584 0.584 0.845

SonarEW 0.994 0.854 0.754 0.737 0.915

SpectEW 0.910 0.787 0.793 0.822 0.853

Tic-tac-toe 0.901 0.751 0.719 0.735 0.788

Vote 0.976 0.938 0.904 0.904 0.958

WaveformEW 0.825 0.712 0.773 0.762 0.75

WineEW 1.000 0.928 0.937 0.933 0.98

Zoo 0.995 0.964 0.855 0.861 0.958

TABLE 6.17: The proposed approach pcMBGWO versus WOA, GA, PSO and
DF in term of accuracy over UCI dataset.

79

Obviously, the proposed algorithm (pcMBGWO) outperforms the competing metaheuris-

tic algorithms by a noticeable difference as shown in table [6.17]. So, we confidently used

the proposed algorithms on telecom customers dataset as described in section 5.1 in order to

reduce the table dimension by extracting the most important attributes (Feature Selection).

Then, we used these features to predict the customer churns. In this regard, we used the

data mining algorithm K-Nearest Neighbors (KNN) on the extracted attributes for churn

prediction, then we compared the results against the non-trimmed table (without Feature

Selection) using the following machine learning algorithms: K-Nearest Neighbors (KNN),

Random Forests (RF), Decision Tree (CART) and Gaussian (NB) as shown in table 6.18.

The results showed the superiority of (pcMBGWO) approach in term of accuracy. With these

results we answered the following research questions (1.3): RQ 1, RQ 4.

Category Algorithm name Accuracy

Grey Wolf Optimizer BGWO 0.775

pBGWO 0.783

piMBGWO 0.784

pcMBGWO 0.806

Machine learning KNeighbors (K-NN) 0.748

Random Forests (RF) 0.762

Decision Tree (CART) 0.725

Gaussian (NB) 0.701

TABLE 6.18: Comparing the proposed approaches with selected machine
learning techniques on telecom customers dataset.

It is worth mentioning that the accuracy of predicting the customers churn on telecom

dataset based on reduced number of attributes by applying the proposed algorithms: BGWO

(0.775), pBGWO (0.783), piMBGWO (0.784) and pcMBGWO (0.806) were significantly bet-

ter than predicting the customers churn using the whole attribute set using machine learning

algorithms; specifically the K-Nearest Neighbors (KNN) algorithm (0.748).

80

The K-Nearest Neighbors (KNN) algorithm is known to have the following issues: strug-

gles to give the accurate prediction in high dimensional dataset, does not predict accurately

on imbalanced data and sensitive to outliers. In this regards, the proposed algorithms solved

the high dimensional dataset problem by reducing the number of attributes (features), and

create a table with fewer features while maintaining a high accuracy.

81

Chapter 7

Conclusion and Future Work

In this thesis, two parallel models of Grey Wolf Optimizer (GWO) based on Multiple-

offspring-sampling technique was proposed. The parallel models (piMBGWO & pcMBGWO)

used OpenMP parallel framework. A well known benchmarks from UCI repository were uti-

lized to validate the proposed approach. We conducted a number of experiments on the

proposed approaches, in addition a comparison experiments with original and parallel ver-

sion of GWO as well. The proposed approaches provides promising results to be used as

customer churn prediction model. Finally We recommend using parallel independent model

to get competitive results in term of time and accuracy. Furthermore, we recommend using

the cooperative model, which outperforms the independent model in accuracy if the execution

time is not important in solving a problem.

As a future work, we intend to use dedicated hardware (CUDA/NVIDIA GPU) for meta-

heuristic search instead of OpenMP, since we anticipate to deal with enormous size of cus-

tomer’s valuable and hidden data stored in telecom companies’ warehouses (big-data). Thus

we will be able to build a model that predict customer churn using couple thousands of GPU

cores, which is definitely will boost the search time. On other hand, using ensemble model

of different metaheuristics search algorithms such: BGWO, genetic algorithm, PSO, Whale,

etc. will increase the search capabilities, since each algorithm have its own characteristics, e.g

GWO have more exploitation (local optima), on the other hand, WOA have more exploration.

Of course, all these algorithms will run in parallel environment.

82

References

[1] J. Hadden, A. Tiwari, R. Roy, and D. Ruta, ”Computer assisted customer churn man-

agement: State-of-the-art and future trends,” Comput. Oper. Res., vol. 34, no. 10, pp.

2902–2917, Oct. 2007.

[2] Amal M. Almana et al Int. Journal of Engineering Research and Applications, ISSN :

2248-9622, Vol. 4, Issue 5(Version 6), May 2014, pp.165-171

[3] Lin, W.C., Tsai, C.F. and Ke, S.W., (2014), ”Dimensionality and data reduction in tele-

com churn 22 prediction”, Kybernetes, 43(5), pp.737-749.

[4] A. Sharma and P. Prabin Kumar, ”A Neural Network based Approach for Predicting

Customer Churn in Cellular Network Services,” Int. J. Comput. Appl., vol. 27, no. 11,

pp. 26–31, 2011.

[5] W. Verbeke, D. Martens, C. Mues, and B. Baesens, ”Building comprehensible customer

churn prediction models with advanced rule induction techniques,” Expert Syst. Appl.,

vol. 38, no. 3, pp. 2354–2364, Mar. 2011.

[6] C. Kirui, L. Hong, W. Cheruiyot, and H. Kirui, ”Predicting Customer Churn in Mobile

Telephony Industry Using Probabilistic Classifiers in Data Mining,” IJCSI Int. J. Comput.

Sci. Issues, vol. 10, no. 2, pp. 165–172, 2013.

[7] B. Huang, M. T. Kechadi, and B. Buckley, ”Customer churn prediction in telecommuni-

cations,” Expert Syst. Appl., vol. 39, no. 1, pp. 1414–1425, Jan. 2012.

83

[8] C.-S. Lin, G.-H. Tzeng, and Y.-C. Chin, ”Combined rough set theory and flow network

graph to predict customer churn in credit card accounts,” Expert Syst. Appl., vol. 38, no.

1, pp. 8–15, Jan. 2011.

[9] Shin-Yuan Hung , David C. Yen , H. Wang, Applying data mining to telecom, Expert

Systems with Applications 31 (2006) 515–524, Elseiver.

[10] V. Lazarov and M. Capota, ”Churn Prediction,” Bus. Anal. Course. TUM Comput. Sci.,

2007.

[11] R. Mansouri, M. Saraee, and R. Amirfattahi, ”Application of Data Mining in Predicting

Cell Phones Subscribers Behavior Employing the Contact Pattern,” in 2010 International

Conference on Data Storage and Data Engineering (DSDE), 2010, pp. 63–68.

[12] O. R. Zaïane, ”Introduction to Data Mining.” CMPUT690 Principles of Knowledge Dis-

covery in Databases Chapter, pp. 1–15, 1999.

[13] C. Shearer, ”The CRISP-DM model: The New Blueprint for Data Mining,” J. Data

Warehous., vol. 5, no. 4, pp. 13–22, 2000.

[14] Z. Kasiran, Z. Ibrahim, and M. S. M. Ribuan, ”Mobile phone customers churn prediction

using elman and Jordan Recurrent Neural Network,” in Computing and Convergence

Technology (ICCCT), 2012 7th International Conference on, 2012, pp. 673–678.

[15] S. A. Qureshi, A. S. Rehman, A. M. Qamar, A. Kamal, and A. Rehman, ”Telecommuni-

cation subscribers’ churn prediction model using machine learning,”in Digital Information

Management (ICDIM), 2013 Eighth International Conference on, 2013, pp. 131–136.

[16] W. H. Au, K. C. C. Chan, and Y. Xin, ”A novel evolutionary data mining algorithm with

applications to churn prediction,” Evol.Comput. IEEE Trans., vol. 7, no. 6, pp. 532–545,

2003.

[17] A. Sharma and P. K. Panigrahi, ”A Neural Network based Approach for Predicting

Customer Churn in Cellular Network Services,” Int. J. Comput. Appl., vol. 27, no.11,

2011.

84

[18] V. Lazarov and M. Capota, ”Churn Prediction,” TUM Comput. Sci., 2007.

[19] S. A. Qureshi, A. S. Rehman, A. M. Qamar, A. Kamal, and A. Rehman, ”Telecommu-

nication subscribers’ churn prediction model using machine learning,” in 2013 Eighth In-

ternational Conference on Digital Information Management (ICDIM), 2013, pp. 131–136.

[20] Q. Shen, H. Li, Q. Liao, W. Zhang, and K. Kalilou, ”Improving churn prediction in

telecommunications using complementary fusion of multilayer features based on factor-

ization and construction,” in The 26th Chinese Control and Decision Conference (2014

CCDC), 2014, pp. 2250–2255.

[21] A. T. Jahromi, M. Moeini, I. Akbari, and A. Akbarzadeh, ”A Dual-Step Multi-

Algorithm Approach For Churn Prediction In Pre-Paid Telecommunications Service

Providers,”RISUS. J. Innov. Sustain., vol. 1, no. 2, 2010.

[22] M. Kaur, K. Singh, and N. Sharma, ”Data Mining as a tool to Predict the Churn Be-

haviour among Indian bank customers, ”Int. J. Recent Innov. Trends Comput. Commun.,

vol. 1, no. 9, pp. 720–725, 2013.

[23] R. A. Soeini and K. V. Rodpysh, ”Evaluations of Data Mining Methods in Order to

Provide the Optimum Method for Customer Churn Prediction: Case Study Insurance

Industry,” 2012 Int. Conf. Inf. Comput. Appl. (ICICA 2012), vol. 24, pp. 290–297, 2012.

[24] V. Yeshwanth, V. V. Raj, and M.Saravanan, ”Evolutionary Churn Prediction in Mobile

Networks USing Hybrid Learning,” in Twenty-Fourth International FLAIRS Conference,

2011, pp. 471–476.

[25] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[26] N. Singh, R.S. Raw, and R.K. Chauhan, ”Data mining with regression technique,” J.

Information Systems and Communication, vol. 3, no. 1, pp. 199–202, 2012.

[27] Hosmer DW Jr, Lemeshow S, Sturdivant RX (2013) Applied Logistic Regression. Third

Edition. New Jersey: John Wiley Sons

85

[28] G. Nie, W. Rowe, L. Zhang, Y. Tian, and Y. Shi, ”Credit card churn forecasting by

logistic regression and decision tree,” Expert Syst. Appl., vol. 38, no. 12, pp. 15273–15285,

2011.

[29] S. V Nath and R. S. Behara, “Customer churn analysis in the wireless industry: A data

mining approach,” in Proceedings-Annual Meeting of the Decision Sciences. Institute,

2003.

[30] Y. Zhang, J. Qi, H. Shu, and J. Cao, ”A hybrid KNN-LR classifier and its application

in customer churn prediction,” in 2007 IEEE International Conference on Systems, Man

and Cybernetics, 2007, pp. 3265–3269.

[31] Y. Huang and T. Kechadi, ”An effective hybrid learning system for telecommunication

churn prediction,”Expert Syst. Appl., vol. 40, no. 14, pp. 5635–5647, Oct. 2013.

[32] I. Brandusoiu and G. Toderean, ”Churn Prediction in the Telecommunications Sector

using Support Vector Machines,” Ann. ORADEA Univ. Fascicle Manag. Technol. Eng.,

no. 1, 2013.

[33] Jiayin Qi, Li Zhang, et al. ADTreesLogit model for customer churn prediction. Annual

of operation research, 2009, 168(1): 247-265.

[34] Yangming Zhang, Jiayin Qi, Huaying Shu, Jiantong Cao. A hybrid KNN-LR classifier

and its application in customer churn prediction. 2007 IEEE International Conference on

Systems, Man and Cybernetics, Oct. 7-10, 2007,3265-3269.

[35] Jin Zhang, D. ”Research on Rough Set Theory Based Data Mining Algorithm.,” Unpub-

lished doctoral dissertation, Northwestern Polyteehnieal University, China. December,

2005.

[36] R.Kohavi and B.Frasea.. ”Useful Feature Subsets and Rough set reducts,” International

Workshop on Rough Sets and Soft Computing (RSSC), pp. 310-317, 1994.

[37] A. M. Taha and A. Y. Tang, ”Bat algorithm for rough set attribute reduction,” Journal

of Theoretical and Applied Information Technology, vol. 51, no. 1, pp. 1–8, 2013.

86

[38] M. Dash and H. Liu, ”Feature selection for classification,” Intelligent data analysis, vol.

1, no. 3, pp. 131–156, 1997.

[39] M. Mafarja, I. Aljarah, A. A. Heidari, A. I. Hammouri, H. Faris, A.-Z. Ala’M, and S.

Mirjalili, ”Evolutionary population dynamics and grasshopper optimization approaches

for feature selection problems,” Knowledge-Based Systems, 2017.

[40] H. Liu and H. Motoda, Feature selection for knowledge discovery and data mining.

Springer Science Business Media, 2012, vol. 454.

[41] M. M. Mafarja and S. Mirjalili, “Hybrid whale optimization algorithm with simulated

annealing for feature selection,” Neurocomputing, vol. 260, pp. 302–312, 2017.

[42] M. Mafarja and S. Mirjalili, ”Whale optimization approaches for wrapper feature selec-

tion,” Applied Soft Computing, vol. 62, pp. 441–453, 2018.

[43] J. H. Holland, ”Genetic algorithms,” Scientific american, vol. 267, no. 1, pp. 66–73, 1992.

[44] B. Webster and P. J. Bernhard, ”A local search optimization algorithm based on natural

principles of gravitation,” Tech. Rep., 2003.

[45] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ”Grey wolf optimizer,” Advances in engineering

software, vol. 69, pp. 46–61, 2014.

[46] Talbi E (2009) Metaheuristics: from design to implementation. John Wiley Sons, Hobo-

ken

[47] Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applica-

tions. Wiley, Chichester (2010)

[48] C. Blum and A. Roli, ”Metaheuristics in combinatorial optimization: Overview and

conceptual comparison,” ACM computing surveys (CSUR), vol. 35, no. 3, pp. 268–308,

2003.

[49] S. Mirjalili and A. Lewis, ”The whale optimization algorithm,” Advances in Engineering

Software, vol. 95, pp. 51–67, 2016.

87

[50] M. Dorigo, M. Birattari, and T. Stutzle, ”Ant colony optimization-artificial ants as a

computational intelligence technique,” IEEE computational intelligence magazine, vol. 1,

no. 4, pp. 28–39, 2006.

[51] J. Kennedy and R. Eberhart, ”particle swarm optimization,” in proceedings of the 1995

ieee international conference on neural networks, vol. 4, perth, australia, ieee service

center, piscataway, nj, 1995, pp.” 1942.

[52] A. Kaveh and N. Farhoudi, ”A new optimization method: dolphin echolocation,” Ad-

vances in Engineering Software, vol. 59, pp. 53–70, 2013.

[53] B. Chapman, G. Jost, R. VanderPas, and D. J. Kuck. Using OpenMP: Portable Shared

Memory Parallel Programming. MIT Press, 2007.

[54] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing:

Design and Analysis of Algorithms. Addison-Wesley, 1994.

[55] M. Berry and G. Linoff. Mastering Data Mining. John Wiley and Sons, New York, USA,

2000.

[56] V. Umayaparvathi and K. Iyak, “Applications of Data Mining Techniques in Telecom, ”

in 2012 International Journal Of Computer Applications (0957-8887), vol 42, No.20, Mar.

[57] Habbas Z., Krajecki M., Singer D. [2000], Domain Decomposition for Parallel Resolu-

tion of Constraint Satisfaction Problems with OpenMP, In: Proceedings of The Second

European Workshop on OpenMP, Edinburgh, Scotland, 1-8.

[58] Christian Igel, Verena Heidrich-Meisner, and Tobias Glasmachers. Shark. Journal of

Machine Learning Research 9, pp. 993-996, 2008.

[59] Wolpert D, Macready W (1997) No free lunch theorems for optimization. IEEE Trans

Evol Comput l(l):67-82.

[60] LaTorre A (2009) A framework for hybrid dynamic evolutionary algorithms: multiple

offspring sampling (mos). Ph.D. thesis, Universidad Politecnica de Madrid (November

2009).

88

[61] LaTorre, Antonio, Santiago Muelas, and José-María Peña. ”A MOS-based dynamic

memetic differential evolution algorithm for continuous optimization: a scalability test.”

Soft Computing 15, no. 11 (2011): 2187-2199.

[62] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,” 2017. [Online].

Available: http://archive.ics.uci.edu/ml

[63] Amin A, Anwar S, Adnan A, Nawaz M, Alawfi K, Hussain A, Huang K. Customer churn

prediction in the telecommunication sector using a rough set approach. Neurocomputing.

2017 May 10;237:242-54.

[64] E. Emary, H. M. Zawbaa, and A. E. Hassanien, ”Binary grey wolf optimization ap-

proaches for feature selection,” Neurocomputing, vol. 172, pp. 371–381, 2016.

[65] C. Wei, I. Chiu, Turning telecommunication call details to churn prediction :a data

mining Approach expert System with applications (2002).

[66] S. M. Keaveney, ”Customer switching behavior in service industries: An exploratory

study,” J. Mark., vol. 59, no. 2, pp. 71–82, 1995.

[67] B. Padmanabhan, A. Hevner, C. Michael, and S. Crystal, ”From information to opera-

tions: Service quality and customer retention,” ACM Trans. Manag. Inf. Syst., vol. 2, no.

4, 2011.

[68] J. Bloemer, K. de Ruyter, and P. Peeters, ”Investigating drivers of bank loyalty: the

complex relationship between image, service quality and satisfaction,” Int. J. bank Mark.,

no. 16, pp. 276–286, 1998.

[69] S. A. Qureshi, A. S. Rehman, A. M. Qamar, A. Kamal, and A. Rehman, ”Telecommu-

nication subscribers’ churn prediction model using machine learning,” in Eighth Interna-

tional Conference on Digital Information Management (ICDIM 2013), 2013, pp. 131–136.

[70] S.Kirkpatrick, C.D.Gelatt, and M.P.Vecchi, Science 220, 671 (1983).

[71] J.H. Holland, Adaptation in Natural and Artificial Systems, Univ. of Michigan Press,

Ann Arbor, MI. 1975.

89

[72] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley, New York, 1989.

[73] L. Davis (Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York,

1991.

[74] Z. Michalewicz, Genetic AlgorithmsData Structures” Evolution Programs, Springer, New

York, 1992.

[75] J.L.R. Filho, P.C. Treleaven, C. Alippi, Genetic algorithm programming environments,

IEEE Comput. 27 (1994) 28-43.

[76] D. Karaboga, “An idea based on honey bee swarm for numerical optimization,” Technical

report-tr06, Erciyes university, engineering faculty, computer engineering department,

Tech. Rep., 2005.

[77] R. Y. Nakamura, L. A. Pereira, K. Costa, D. Rodrigues, J. P. Papa, and X.-S. Yang,

“Bba: a binary bat algorithm for feature selection,” in Graphics, Patterns and Images

(SIBGRAPI), 2012 25th SIBGRAPI Conference on. IEEE, 2012, pp. 291–297.

[78] A. Kaveh and N. Farhoudi, “A unified approach to parameter selection in meta-heuristic

algorithms for layout optimization,” Journal of Constructional Steel Research, vol. 67,

no. 10, pp. 1453–1462, 2011.

[79] E. Zorarpacı and S. A. Ozel, “A hybrid approach of differential evolution and artificial

bee colony for feature selection,” Expert Systems with Applications, vol. 62, pp. 91–103,

2016.

[80] S. Oreski and G. Oreski, “Genetic algorithm-based heuristic for feature selection in credit

risk assessment,” Expert systems with applications, vol. 41, no. 4, pp. 2052–2064, 2014.

[81] P. Moradi and M. Gholampour, “A hybrid particle swarm optimization for feature subset

selection by integrating a novel local search strategy,” Applied Soft Computing, vol. 43,

pp. 117–130, 2016.

90

[82] E. Emary, H. M. Zawbaa, and A. E. Hassanien, “Binary ant lion approaches for feature

selection,” Neurocomputing, vol. 213, pp. 54–65, 2016.

[83] H. M. Zawbaa, E. Emary, and B. Parv, “Feature selection based on antlion optimization

algorithm,” in Complex Systems (WCCS), 2015 Third World Conference on. IEEE, 2015,

pp. 1–7.

[84] H. B. Nguyen, B. Xue, I. Liu, and M. Zhang, “Filter based backward elimination in

wrapper based pso for feature selection in classification,” in Evolutionary Computation

(CEC), 2014 IEEE Congress on. IEEE, 2014, pp. 3111–3118.

[85] R. M. Aiex, S. L. Martins, C. C. Ribeiro, and N. R. Rodriguez. Cooperation multi-thread

parallel tabu search with an application to circuit partitioning. In Solving Irregularly

Structured Problems in Parallel, LNCS Vol. 1457 Springer, 1998, pp. 310–331.

[86] T. G. Crainic and M. Gendreau. Cooperative parallel tabu search for capacitated network

design. Journal of Heuristics, 8:601–627, 2002.

[87] E.-G. Talbi, Z. Hafidi, and J. M. Geib. A parallel adaptive tabu search approach. Parallel

Computing, 24:2003–2019, 1996.

[88] J. Kennedy. Stereotyping: Improving particle swarm performance with cluster analysis.

In International Conference on Evolutionary Computation, 2000, pp. 1507–1512.

[89] S. Tongchim and P. Chongstitvatana. Parallel genetic algorithm with parameter adap-

tation. Information Processing Letters, 82(1):47–54, 2002.

[90] E. Alba, F. Luna, A. J. Nebro, and J. M. Troya. Parallel heterogeneous genetic algorithms

for continuous optimization. Parallel Computing, 30:699–719, 2004

[91] D. J. Ram, T. H. Sreenivas, and K. G. Subramaniam. Parallel simulated annealing

algorithms. Journal of Parallel and Distributed Computing, 37:207–212, 1996.

[92] Gao, Yue-lin, Xiao-hui An, and Jun-min Liu. ”A particle swarm optimization algorithm

with logarithm decreasing inertia weight and chaos mutation.” In 2008 International Con-

ference on Computational Intelligence and Security, vol. 1, pp. 61-65. IEEE, 2008.

91

[93] Hu, Hongping, Yanping Bai, and Ting Xu. ”Improved whale optimization algorithms

based on inertia weights and theirs applications.” International journal of circuits, systems

and signal processing 11 (2017): 12-26.

[94] Kentzoglanakis, Kyriakos, and Matthew Poole. ”Particle swarm optimization with an

oscillating inertia weight.” In GECCO’09-11th Annual conference on Genetic and evolu-

tionary computation. 2009.

[95] Chen, Guimin, Xinbo Huang, Jianyuan Jia, and Zhengfeng Min. ”Natural exponential

inertia weight strategy in particle swarm optimization.” In 2006 6th World Congress on

Intelligent Control and Automation, vol. 1, pp. 3672-3675. IEEE, 2006.

[96] Mafarja, Majdi, Radi Jarrar, Sobhi Ahmad, and Ahmed A. Abusnaina. ”Feature selec-

tion using binary particle swarm optimization with time varying inertia weight strategies.”

In Proceedings of the 2nd International Conference on Future Networks and Distributed

Systems, p. 18. ACM, 2018.

	Abstract
	Arabic Abstract
	Acknowledgements
	Introduction
	Research Motivation
	Research Objectives
	Research Questions
	Customer Churn In Telecommunication Industry
	Churning

	Data Mining Techniques

	Literature Review
	Metaheuristic
	Metaheuristc for Feature Selection
	Parallel Metaheuristic
	Parameter Level
	Search Level
	Algorithm Level

	Customer Churn

	Background
	Feature Selection
	Feature subset generation
	Complete Search
	Random Search
	Heuristic Search

	Feature evaluation functions
	Filter Approach
	Wrapper Approach

	Feature stopping Criterion

	Metaheuristics
	Single-Based Meta-heuristic Algorithms
	Population-Based Meta-heuristic Algorithms

	Swarm Intelligence Algorithms
	Gery Wolf Optimizer (GWO)
	Binary Gery Wolf Optimizer (BGWO)

	Development Frameworks
	OpenMP
	Shark

	Parallel Metaheuristics
	Parallel and Distributed Architectures
	Dedicated Architectures

	Parallel Programming Environments and Middlewares
	Performance Evaluation
	Parallel Design Of Metaheuristics
	Algorithmic-Level Parallel Model
	Independent Algorithmic-Level Parallel Model
	Cooperative Algorithmic-Level Parallel Model

	Iteration-Level Parallel Model
	Solution-Level Parallel Model
	Main Properties of Parallel Metaheuristics

	The Implementation of Parallel BGWO
	Data Acquisition
	Preprocessing
	Data Cleaning

	The Proposed Approach
	Multiple Offspring Sampling (MOS)
	Independent parallel BGWO
	Cooperative parallel BGWO

	Experiments
	Experiment Setup
	Benchmark Datasets
	Results and Discussion

	Conclusion and Future Work
	References

